Introduction to Network Address Translation

Campus Network Design & Operations Workshop

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

NSRC
Network Startup Resource Center

UNIVERSITY OF OREGON

Last updated 27th October 2022
Network Address Translation

• NAT has become a commonly used technique for prolonging the use of IPv4 on today’s Internet
 – Originally designed as a means of allowing isolated networks to connect to Internet without renumbering into public IP address space

• Presentation introduces NAT terminology, the typical use case in a Campus Network, and sample Cisco IOS configuration
Network Address Translation

• NAT is translation of one IP address into another IP address
• NAPT (Network Address & Port Translation) translates multiple IP addresses into one other IP address
 – TCP/UDP port distinguishes different packet flows
• NAT-PT (NAT – Protocol Translation) is a particular technology which does protocol translation (v4 to v6) in addition to address translation
 – NAT-PT is has long been made obsolete by the IETF
Carrier Grade NAT (CGN)

- Service Provider version of subscriber NAT
 - Subscriber NAT can handle only hundreds of translations
 - ISP NAT can handle millions of translations
 - Expensive high-performance hardware
- Not limited to just translation within one address family, but does address family translation as well
- Sometimes referred to as Large Scale NAT (LSN)
NAT Use Case

• A campus network does not have sufficient public IPv4 address space to address all the devices on their network
• Their service provider lets them use a small range of addresses – e.g. /28
• The campus might divide the address space into two /29s
 − One /29 for services requiring public IP addresses
 − One /29 for translating internal addresses to public addresses
NAT Use Case

• The /29 for public services:
 – Total of 8 addresses in the subnet
 • 1 address reserved for the gateway router
 • 2 addresses reserved for the subnet
 • 5 addresses available for servers & services

• The /29 for address translation:
 – Campus uses NAPT (network address and port translation) allowing mapping of multiple internal addresses to up to 6 external addresses
 • (Cisco IOS does not allow the first and last address in the subnet range to be used)
How NAPT works

• NAPT allows mapping of multiple internal addresses to one external address.
 – Each TCP or UDP session is mapped to one TCP or UDP port of an external address
 – There are ~64000 unprivileged TCP and UDP ports
 – Typical end user device consumes ~400 TCP and UDP ports at any one time
 – Which allows around 150 end user devices per public IP address

• One /29 would allow only 900 simultaneous fully active end user devices
Squeezing more out of NAPT

• Network operators squeeze more internal users through NAPT devices by:
 − Reducing translation session timeouts
 • Cisco default for TCP is 24 hours!!
 − Reducing the number of TCP & UDP sessions any one internal user can have
 • Shows up as broken mapping applications
 • Shows up as “stuck internet”
 • Shows up as “sites unreachable”
 − Deploying IPv6 (!) which reduces the NAPT burden
 • Most large/popular content providers now support IPv6
Avoid multiple layers of NAT!

- NAT at border only. Use routing inside your network, not NAT.
Campus Use Case: Simple

- Upstream provides 100.64.10.64/28
- NAT implemented on border router
- Public Services LAN uses public IP address block
 - 100.64.10.72/29 from Upstream’s /28
- Rest of Campus uses private address space
 - 192.168.0.0/16
 - NAT’ed to 100.64.10.64/29
Typical Cisco configuration (1)

- NAT Configuration set up on Border Router
- Define the address range we want to NAT

```plaintext
ip access-list extended NATplus
 deny   ip 100.64.10.0 0.0.0.255 any
 deny   ip 192.168.0.0 0.0.255.255 192.168.0.0 0.0.255.255
 permit ip 192.168.0.0 0.0.255.255 any
 deny   ip any any log
```

- This says:
 - Don’t NAT any of 100.64.10.0/24
 - Don’t NAT when source and destination addresses are both internal
 - NAT internal source to any external destination
 - Anything that doesn’t match is logged to catch “errors”
Typical Cisco configuration (2)

• Define the external interface we want to NAT to:

```conf
interface GigabitEthernet 0/1
description Link to ISP
ip address 100.64.10.2 255.255.255.252
ip nat outside
!
```

• Define the internal interface we want to NAT from:

```conf
interface GigabitEthernet 0/2
description Link to Campus Core Switch
ip address 192.168.255.1 255.255.255.252
ip nat inside
!
```
Typical Cisco configuration (3)

• Modifying the translation timeouts:

```
ip nat translation dns-timeout 60
ip nat translation icmp-timeout 180
ip nat translation udp-timeout 300
ip nat translation finrst-timeout 60
ip nat translation tcp-timeout 3600
```

• This will
 - Set the translation timeouts for DNS to 60 seconds, ICMP to 180 seconds, UDP to be 300 seconds, FIN/RST to be 60 seconds (all Cisco defaults), and TCP to 3600 seconds (from 86400 seconds default)
 - Timeout is when there is no more traffic using that mapping
 - Other translation timeout options are available in Cisco IOS too but the above are the most commonly used
Typical Cisco configuration (4a)

- Activating the NAT on ONE IPv4 address
  ```
  ip nat inside source list NATplus interface Gigabit 0/1 overload
  ```
- This will
 - match the NATplus list for traffic going from Gigabit 0/2 to Gigabit 0/1
 - Overload means use NAPT (one to many mapping using TCP/UDP ports)
 - NAPT will use the IP address of the Gigabit 0/1 port to map all the internal addresses to
- Campus traffic will appear as though it is all originated from the 100.64.10.2 address
Typical Cisco configuration (4b)

• Activating the NAT on an IPv4 address pool

• First create the public address pool:

 ip nat pool CAMPUS 100.64.10.64 100.64.10.67 prefix-length 29
 – Which defines the pool CAMPUS having 3 IP public IP addresses out of the 100.64.10.64/28 address block given to the campus
 – Note: cannot use the first and last address in the /29 for NAT

• Now enable NAT

 ip nat inside source list NATplus pool CAMPUS overload
 – Which will match all traffic in the NATplus list translating it into the address pool CAMPUS
Diagnosis on a Cisco Router

• To find out what is being translated:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Inside global</th>
<th>Inside local</th>
<th>Outside local</th>
<th>Outside global</th>
</tr>
</thead>
<tbody>
<tr>
<td>udp</td>
<td>100.64.10.2:20480</td>
<td>192.168.0.65:20480</td>
<td>193.0.0.228:33436</td>
<td>193.0.0.228:33436</td>
</tr>
<tr>
<td>udp</td>
<td>100.64.10.2:20482</td>
<td>192.168.0.65:20482</td>
<td>192.5.5.241:33436</td>
<td>192.5.5.241:33436</td>
</tr>
<tr>
<td>udp</td>
<td>100.64.10.2:20483</td>
<td>192.168.0.65:20483</td>
<td>192.36.148.17:33436</td>
<td>192.36.148.17:33436</td>
</tr>
<tr>
<td>udp</td>
<td>100.64.10.2:20484</td>
<td>192.168.0.65:20484</td>
<td>202.12.27.33:33436</td>
<td>202.12.27.33:33436</td>
</tr>
<tr>
<td>udp</td>
<td>100.64.10.2:20485</td>
<td>192.168.0.65:20485</td>
<td>199.7.83.42:33436</td>
<td>199.7.83.42:33436</td>
</tr>
<tr>
<td>udp</td>
<td>100.64.10.2:20486</td>
<td>192.168.0.65:20486</td>
<td>198.41.0.4:33436</td>
<td>198.41.0.4:33436</td>
</tr>
<tr>
<td>udp</td>
<td>100.64.10.2:20487</td>
<td>192.168.0.65:20487</td>
<td>192.228.79.201:33436</td>
<td>192.228.79.201:33436</td>
</tr>
</tbody>
</table>

• This shows
 - The local public IP address: UDP port
 - The local internal address and UDP port it maps to
 - And then the global destination addresses & ports
Juniper example with a NAT pool

• First we create a service set definition

```plaintext
[edit services]
service-set s1 {
  nat-rules rule-napt-44;
  interface-service {
    service-interface ms-0/1/0;
  }
}
```

• Juniper routers require a multiservices PIC to do NAPT (MS-MIC or MS-MPC)

• As of 2020 the TRIO chipset can only do 1:1 NAT inline
Juniper example with a NAT pool(2)

• Next we create the NAT pool

```conf
[edit services]
nat {
    pool napt-pool {
        address-range low 100.64.10.64 high 100.64.10.67;
        port {
            automatic auto;
        }
    }
}
```
Juniper example with a NAT pool (3)

• Next we create the NAT rules

```
[edit services]
nat {
    rule rule-napt-44 {
        match-direction input;
        term t1 {
            from {
                source-address 192.168.0.0/16;
            }
            then {
                translated {
                    source-pool napt-pool;
                    translation-type {
                        napt-44;
                    }
                }
            }
        }
    }
}
```
Juniper example with a NAT pool(4)

• Lastly, some logging

```plaintext
[edit services]
adaptive-services-pics {
    traceoptions {
        flag all;
    }
}
```
Campus Use Case: Per Subnet NAT

- Same scenario as before
- But NAT for “Rest of Campus” translates different subnets of 192.168.0.0/16 to different public addresses
 - Useful for distinguishing internal sources based on their public IP address
Campus Use Case: Per Subnet NAT

• Campus 192.168.0.0/16 needs to be NAT’ed to different public IP addresses
• Assume that 100.64.10.65 to 100.64.10.70 are used for the NAT pool – 6 addresses out of the 100.64.10.64/29 address block available

<table>
<thead>
<tr>
<th>Function</th>
<th>Internal Subnet</th>
<th>External Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Management & Internal Services</td>
<td>192.168.0.0/22</td>
<td>100.64.10.65</td>
</tr>
<tr>
<td>Science Faculty</td>
<td>192.168.16.0/20</td>
<td>100.64.10.66</td>
</tr>
<tr>
<td>Arts Faculty</td>
<td>192.168.32.0/20</td>
<td>100.64.10.67</td>
</tr>
<tr>
<td>Engineering Faculty</td>
<td>192.168.48.0/20</td>
<td>100.64.10.68</td>
</tr>
<tr>
<td>Library & Administration</td>
<td>192.168.64.0/20</td>
<td>100.64.10.69</td>
</tr>
<tr>
<td>Campus Wireless</td>
<td>192.168.128.0/17</td>
<td>100.64.10.70</td>
</tr>
</tbody>
</table>
Typical Cisco configuration (1)

• Define the address ranges we want to NAT

```plaintext
ip access-list extended Services-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.0.0 0.0.3.255 any
  deny   ip any any

ip access-list extended Science-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.16.0 0.0.15.255 any
  deny   ip any any

ip access-list extended Arts-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.32.0 0.0.15.255 any
  deny   ip any any

ip access-list extended Engineering-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.48.0 0.0.15.255 any
  deny   ip any any
```
Typical Cisco configuration (1)

• Continued:

```
ip access-list extended Library-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.64.0 0.0.15.255 any
  deny   ip any any

ip access-list extended Admin-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.96.0 0.0.15.255 any
  deny   ip any any

ip access-list extended Wireless-NAT
  deny   ip 100.64.10.0 0.0.0.255 any
  permit ip 192.168.128.0 0.0.127.255 any
  deny   ip any any
```

- Define one access-list per internally assigned address block
Typical Cisco configuration (2)

- Internal and External interface NAT definitions are as in the previous example
- NAT translation timeouts also are as in the previous example
Typical Cisco configuration (3)

• Now define the address pools:

ip nat pool Services	100.64.10.65 100.64.10.65 prefix-length 29
ip nat pool Science	100.64.10.66 100.64.10.66 prefix-length 29
ip nat pool Arts	100.64.10.67 100.64.10.67 prefix-length 29
ip nat pool Engineering	100.64.10.68 100.64.10.68 prefix-length 29
ip nat pool AdminLib	100.64.10.69 100.64.10.69 prefix-length 29
ip nat pool Wireless	100.64.10.70 100.64.10.70 prefix-length 29

• Note that the public subnet we are NAT’ing into is 100.64.10.64/29
 - We can use 6 of the 8 IP addresses in the /29
 - (The University’s public servers use the other /29)
Typical Cisco configuration (4)

• Now define the NAT function:

```
ip nat inside source list Services-NAT pool Services overload
ip nat inside source list Science-NAT pool Science overload
ip nat inside source list Arts-NAT pool Arts overload
ip nat inside source list Engineering-NAT pool Engineering overload
ip nat inside source list AdminLibrary-NAT pool Library overload
ip nat inside source list Wireless-NAT pool Wireless overload
```

− This will match the internal address block with the correct external address

• The example shows how a more sophisticated NAT strategy could be developed for the campus
Summary

• NAPT is useful technique for connecting large numbers of campus network devices to the public IPv4 Internet when the campus has limited or no public IPv4 address space
 − Private address space used for campus networks:
 • 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

• Border router is the most common location of the NAT device
 − Be aware of CPU loading though

• Be aware of NAT scaling limitations
Questions?
Aside: NAT Issues (1)

• How to scale NAT performance for large networks?
 - Limiting tcp/udp ports per user harms user experience
 - Redesigning network

• Breaks the end-to-end model of IP

• Breaks end-to-end network security

• Breaks non-NAT friendly applications
 - Or NAT has to be upgraded (if possible)

• Content cannot be hosted behind a NAT
Aside: NAT Issues (2)

- Makes fast rerouting and multihoming more difficult
 - Moving IPv4 address pools between CGNs for external traffic engineering
- Address sharing has reputation, reliability and security issues for end-users
- NAT device keeps the state of the connections
- Makes the NAT device a target for miscreants due to possible impact on large numbers of users
Aside: NAT Issues (3)

• Consumer NAT device:
 − 5000 sessions means only 12 connected devices!
 − “NAT table FULL” error messages
 − “Broken Googlemaps”
 − “Stuck Internet”

• Carrier Grade NAT device:
 − 20 million sessions (Cisco ASR9001 ISM)
 − Which realistically is 50k users (400 sessions per user)
 − RIR 2x final IPv4 /22s only allows 640k users