Cryptographic methods:

Three important
components of
cryptographic
systems

Recommended reading:
"Applied Cryptography", Bruce Schneier

1. "Private key" or "symmetric"
ciphers

cipher
text
clear clear

text k k text

The same key is used to encrypt the document
before sending and decrypt it at the far end

Examples of symmetric ciphers

DES - 56 bit key length, designed by US
security service

3DES - effective key length 112 bits

AES (Advanced Encryption Standard) - 128
to 256 bit key length

Blowfish - 128 bits, optimised for fast
operation on 32-bit microprocessors

IDEA - 128 bits, patented (requires a licence
for commercial use)

Why use cryptography?

® Can offer genuinely secure solutions to

important security problems
® Some governments forbid it

® Confidentiality
® Can | be sure no-one else can see my data?
(e.g. sniffing)

® |[ntegrity
® Has my data been modified?

® Authentication
® Are you who you claim to be?
® Access controls (Authorisation)

We assume an eavesdropper is
able to intercept the ciphertext

® How can they recover the cleartext?

Features of symmetric ciphers

® Fast to encrypt and decrypt, suitable for
large volumes of data

@ A well-designed cipher is only subject to
brute-force attack; the strength is therefore
directly related to the key length

® Current recommendation is a key length of

at least 90 bits
® |.e. to be fairly sure that your data will be safe
for at least 20 years

® Problem - how do you distribute the keys?

2. "Hashing" - one-way
encryption

j hashing Fixed length "hash"

clear function or "message digest"

text

Munging the document gives a short
"message digest" (checksum). Not possible to go
back from the digest to the original document.

v

So what use is that?
a. Integrity checks

@ You can run many megabytes of data
through MD5 and still get only 128 bits to
check

® An attacker cannot feasibly modify your file
and leave it with the same MD5 checksum

@ Gives your document a unique "fingerprint"

Software announcements often
contain an MD5 checksum

@ |t's trivial to check

® Protects you against hacked FTP servers
and download errors

$ md5sum exi m 4. 30.tar. bz2
be53ba6801a019452f 06b68c112a2ecl exi m4.30.tar. bz2
$

Could the attacker have modified
the announcement E-mail as well?

11

Examples

Unix crypt() function, based on DES
MD5 (Message Digest 5) - 128 bit hash
SHAT1 (Secure Hash Algorithm) - 160 bits

No two documents have yet been
discovered which have the same MD5
digest!

® No feasible method to create any document
which has a given MD5 digest

Exercise

® Exercise: on your machine type
® cat /etc/aliases

® | ook at your neighbour's machine. Is their
file exactly the same as yours? Can you be
sure?

® md5sum /etc/aliases
® Compare the result with your neighbour

® Now change ONE character in /etc/aliases
and repeat the md5sum test

® Under FreeBSD the command is "md5"

So what use is that?
b. Encrypted password storage

® We don't want to keep cleartext passwords if
possible; the password file would be far too
attractive a target

® Store hash(passwd) in /etc/shadow

® When user logs in, calculate the hash of the
password they have given, and compare it to
the hash in the password file

® |f the two hashes maitch, the user must have
entered the correct password

® Can an attacker still recover the password?

So what use is that?
c. Shared secret authentication

® Using hashing, a user can prove that they
possess a password, without actually
sending it over the wire

® Usually called a "shared secret" in this case

Challenge

Client =
hash(Challenge + Secret)

Server recalculates the hash using the

challenge it sent and its local copy of the
secret. OK if both hashes match.

So what use is that?
d. Generating encryption keys

Users cannot remember 128 bit binary
encryption keys

However they can remember "passphrases"

A hash can be used to convert a passphrase
into a fixed-length encryption key

The longer the passphrase, the more
"randomness" it contains and the harder to
guess. English text is typically only 1.3 bits
of randomness per character.
http://www.cranfield.ac.uk/docs/email/pgp/pgp-attack-faq.txt
http://www.schneier.com/paper-personal-entropy.html

Example:
GPG with symmetric cipher

vi foobar.txt

gpg -c foobar.txt

Ent er passphrase: ding/dong 479 fruitbat
Repeat passphrase: ding/dong 479 fruitbat
|s foobar.txt*

foobar.txt foobar.txt.gpg

rm foobar. t xt

rm renove regular file ‘foobar.txt’?y

gpg foobar.txt.gpg

gpg: CAST5 encrypted data

Ent er passphrase: ding/dong 479 fruitbat
cat foobar.txt

("gpg --version" shows the ciphers available)

Server

13

15

17

Notes on shared secret
authentication

® Examples: APOP, CRAM-MD5

@ Sniffer cannot see the secret - but they can
see the challenge and hash of (challenge +
secret). This will allow them to try dictionary
and brute-force attacks to recover the
secret.

® The secret must be stored in PLAIN TEXT
on the server for this method to work.

Generating encryption keys
for symmetric ciphers

Passphrase .
entered by 128-bit
user MD5 key

hash

Every passphrase generates a
different 128-bit key

So what use is that?
e. one-time passwords

® S/Key (OPIE)
® Generates sequence of passwords without
storing any secret information on the server!

® Cryptocard
® Physical token for challenge-response

So what use is that? 3. "Public key" ciphers
f. Registering copyright
By giving someone the MD5 digest of a

document, | can prove that | possessed the
document at that time, without having to T
reveal its contents until later t’;xt
clear clear
Lots of other uses text k y k2 text
(public key) (private key)

One key is used to encrypt the document,
a different key is used to decrypt it

19

Public key and Private key Use for authentication:
reverse the roles of the keys

The Public key and Private key are
mathematically related (generated as a pair) .

It is easy to convert the Private key into the Citg*;fr .
Public key. It is not easy to do the reverse. Cloar Cloar
k2 k1

Key distribution problem is solved: you can text text

post your public key anywhere. People can

use it to encrypt messages to you, but only (private key) (public key)

the holder of the private key can decrypt

them. If you can decrypt the document with the

public key, it proves it was written by the

Examples: RSA, Elgamal (DSA) 21 owner of the private key (and was not changed)
Key lengths Protecting the private key

Attacks on public key systems involve ® The security of the private key is paramount:

mathematical attempts to convert the public keep it safe!

key into the private key. This is more .

efficient than brute force. ® Keep it on a floppy or a smartcard?

512-bit has been broken ® Prefer to keep it encrypted if on a hard drive

Recent developments suggest that 1024-bit ® That means you have to decrypt it (using a

keys might not be secure for long passphrase) each time you use it

Recommend using 2048-bit keys @ An attacker would need to steal the file

containing the private key, AND know or
guess the passphrase

23

Protecting the private key

_———— symmetric

| k2 | cipher k

| (encrypted rea%y
| on disk) for use

key

Passphrase
entered by
user hash

25

Public key cryptosystems are
important

@ But they require a lot of computation

(expensive in CPU time)

® So we use some tricks to minimise the

amount of data which is encrypted

27

When authenticating:

® Take a hash of the document and encrypt

only that. An encrypted hash is called a

"digital signature"
. hash tash .
COMPARE

digital

signature

k2 (private) k1 (public) 29

When encrypting:

® Use a symmetric cipher with a random key
(the "session key"). Use a public key cipher
to encrypt the session key and send it along

with the encrypted document.
S text s
random
session key encrypted
session key
k2 (private)

k 1 (public)

Digital Signatures have many
uses...

® E-commerce. An instruction to your bank to
transfer money can be authenticated with a

digital signature.
® | eqislative regimes are slow to catch up

® A trusted third party can issue declarations
such as "the holder of this key is a person
who is legally known as Alice Hacker"
® like a passport binds your identity to your face

@ Such a declaration is called a "certificate"

@ You only need the third-party's public key to
check the signature

Communicating with strangers

® Often we want to communicate securely with

a remote party we have no prior knowledge
of, e.g. a website

® We can agree on an encryption key in such
a way that a passive observer cannot see it
® ¢ g. Diffie-Hellman key exchange
® or just send me your public key and I'll send you
back an encrypted session key

encrypted
e

Digital Certificates can solve the

man-in-the-middle problem

® Problem: | have no prior knowledge of the
remote side's key

® But someone | trust can check who they are

® The trusted third party can vouch for the
remote side by signing a certificate which
contains the remote side's name and public
key

® | can check the validity of the certificate
using the trusted third party's public key

When a client's web browser
connects to me with HTTPS:

® They negotiate an encrypted session with
me, during which they learn my public key

@ | send them the certificate

® They verify the certificate using the CA's
public key, which is built-in to the browser

@ |[f the certificate is valid, the domain name in
the URL matches the domain name in the
certificate, and the expiration date has not
passed, they know the connection is secure

H_[

31

33

35

The "man in the middle" attack

® However, someone who is able to actively
intercept and modify your traffic can pretend
to be the other side

@ The attacker can negotiate separate
encryption keys with both sides

@ You think your traffic is secure, but it isn't!

-

X D

&

Attacker sees all traffic in plain text
- and can modify it!

Example: TLS (SSL) web server
with digital certificate

® | generate a private key on my webserver

® | send my public key plus my identify (my
webserver's domain name) to a certificate
authority (CA)

® The CA manually checks that | am who | say
| am, i.e. | own the domain

® They sign a certificate containing my public
key, my domain name, and an expiration
date (Q: why is an expiration date included?)

® | install the certificate on my web server

The security of TLS depends on:

® Your webserver being secure
® So nobody else can obtain your private key

® The CA's public key being in all browsers

® The CA being well managed
® How carefully do they look after their own
private keys?

@ The CA being trustworthy
® Do they vet all certificate requests properly?
® Could a hacker persuade the CA to sign their
key pretending to be someone else? What
about a government?

PGP takes a different view

® We don't trust anyone except our friends
(especially not big corporate monopolies)

@ You sign your friends' keys to vouch for
them

@ Other people can choose to trust your
signature as much as they trust you

® Generates a distributed "web of trust"

@ Sign someone's key when you meet them
face to face - "PGP key signing parties"

SSH can eliminate passwords

® Use public-key cryptography to prove who
you are

® Generate a public/private key pair locally
® ssh-keygen -t dsa
® Private key is ~/.ssh/id_dsa
® Public key is ~/.ssh/id_dsa.pub

® |[nstall your PUBLIC key on remote hosts
® mkdir .ssh
® chmod 755 .ssh
® Copy public key into ~/.ssh/authorized_keys

® Login!

Designing a good cryptosystem
is very difficult
® Many possible weaknesses and types of
attack, often not obvious
@ DON'T design your own!

® DO use expertly-designed cryptosystems
which have been subject to widespread
scrutiny

® Understand how they work and where the
potential weaknesses are

® Remember the other weaknesses in your
systems, especially the human ones

37

39

41

SSH uses a simple solution to
man-in-the-middle

The first time you connect to a remote host,
remember its public key
® Stored in ~/.ssh/known_hosts

The next time you connect, if the remote key

is different, then maybe an attacker is

intercepting the connection!

® Or maybe the remote host has just got a new
key, e.g. after a reinstall. But it's up to you to
resolve the problem

Relies on there being no attack in progress
the first time you connect to a machine

Notes on SSH authentication

Private key is protected by a passphrase

® So you have to give it each time you log in

® Or use "ssh-agent" which holds a copy of your
passphrase in RAM

No need to change passwords across
dozens of machines

Disable passwords entirely!
® /etc/ssh/sshd_config

Annoyingly, for historical reasons there are
three different types of SSH key
® SSH1 RSA, SSH2 DSA, SSH2 RSA

Where can you apply these
cryptgraphic methods?

At the link layer
® PPP encryption

At the network layer
® |PSEC

At the transport layer
® TLS (SSL): many applications support it

At the application layer

® SSH: system administration, file transfers

® PGP/GPG: for securing E-mail messages,
stand-alone documents, software packages etc.

® Tripwire (and others): system integrity checks

