Brian Candler NSRC

Introduction to Internetworking

The OSI model (Open Systems Interconnection)

1

The OSI model

- A generic model, not a specific protocol like TCP/IP or X25
- Breaks down networking into simpler parts
- Helps us understand, discuss and compare networks

3

Layer 1 - Physical Layer

- Transfers stream of bits from A to B
- Defines connectors, type of cable, maximum length, topology, voltages for 0 and 1, speed (bits per second)

100101110100111101

No concept of bytes or frames

Layer 2 - Link Layer

- Organise bits into bytes and frames
 Special bit patterns as delimiters
- Address frames to a specific machine on a shared (broadcast) medium

- Some layer 2's detect corrupted frames
- Some layer 2's retransmit corrupted frames (but not ethernet)

Layer 3 - Network Layer

- Send data through multiple hops to far distant networks
- Move data between different Layer 2 types
- Uniform numbering scheme
- Globally scalable

Layer 4 - Transport Layer

- Breaks large streams of data into smaller chunks for layer 3 to carry
- Performs end-to-end error correction and flow control (if required)
- Identifies which service (as opposed to which machine) you wish to communicate with

Layer 5 - Session Layer

- Keeps a session running even if transport layer connection has to be broken and reconnected
- Multiplex data through multiple transport connections for higher throughput
- NOT USED IN TCP/IP (Application layer is responsible for these functions if required)

7

Layer 6 - Presentation Layer

- Performs conversion of data formats, e.g. ASCII to EBCDIC
- NOT USED IN TCP/IP (Application layer is responsible for this function, if required)

Layer 7 - Application Layer

- Performs the useful task we are interested in, e.g. sending mail, transferring web pages
- Application-specific protocols (e.g. SMTP, HTTP) carried through the stack to the remote machine
- Applications think they are talking directly to each other - of course we know different!

9

Interaction between layers

- Each layer provides services to the layer directly above
- Each layer makes use of services provided by the layer directly below

11

The OSI Model

- Who has seen this before?
- Any questions?

13

Examples of layer 1/layer 2

- Ethernet
 - Layer 1: 10baseT, 100baseTX, 1000baseTX etc
 - Layer 2: Media Access Control (MAC)
- Other local area networks
 - FDDI, Token Ring, Wireless 802.11
- Asynchronous serial links (e.g. PC/modem)
 - Layer 1: RS232
 - Layer 2: Async PPP, SLIP
- Synchronous serial links
 - Layer 1: RS232, X21, HSSI, POS (STM1, OC3)
 - Layer 2: PPP, Cisco HDLC, Frame Relay...
- Various DSL technologies / ATM

Examples of Layer 3

- IP the Internet Protocol
- Provides a "best effort" datagram delivery service
- Machines are identified by IP numbers, which are globally unique
 - IP version 4: 32-bit IP numbers
 - IP version 6: 128-bit IP numbers
 - Still doubtful as to whether IPv6 will ever be widely deployed
- IPv4 is the only internetworking protocol we'll consider

15

Examples of Layer 4

- TCP: Transmission Control Protocol
 - Guarantees reliable delivery of data, in order
 - Assigns sequence numbers, performs automatic retransmission
 - Connection-based ("virtual circuit")
 - Flow control
 - Allows you to select which process you are communicating with (port number)
- UDP: User Datagram Protocol
 - Connectionless, no delivery guarantees
 - Used when the whole payload can fit inside a single datagram and data loss is acceptable

Examples of Layer 7 protocols

- HTTP: Hyper Text Transfer Protocol
 - For web browser to retrieve pages from web server
 - Runs over TCP
- SMTP: Simple Mail Transfer Protocol
 - For one machine to deliver mail messages to another machine
 - Runs over TCP
- DNS: Domain Name System
 - For machine to issue name-to-address queries
 - Runs over UDP (mostly)
- Many, many more

The Hourglass Model

17

Putting it into practice

 Let's see how we can use the OSI model to test and debug our network

Testing at layer 1

- Check link status lights
- A hub can identify a malfunctioning device and isolate that port (look for "partition light")
- Neither of these is foolproof
 - A cable may be good enough to make the link status light come on, but not good enough to transfer data reliably
- Use a cable tester
- Visual inspection

19

Ask your machine for its interface status

21

Testing at layer 2

- Ethernet doesn't have a direct way to perform tests at layer 2
 - So use a layer 3 test (ping), but direct it to another machine on the same LAN as you
 - Look at interface error counters: netstat -i
- Most serial links have layer 2 testing built in
- e.g. PPP performs an initial exchange of packets to establish the connection (LCP) and can send "keepalive" packets to continuously test it
- On many routers, the interface status will tell you whether layer 2 is up

Testing at layer 3

- "ping" sends a special "echo request" packet. If it arrives, an "echo response" will be sent back
- Proves network working in both directions

\$ ping -c5 147.28.0.39
PING 147.28.0.39 (147.28.0.39): 56 data bytes
64 bytes from 147.28.0.39: icmp_seq=0 ttl=51 time=391.264 ms
64 bytes from 147.28.0.39: icmp_seq=1 ttl=51 time=394.113 ms
64 bytes from 147.28.0.39: icmp_seq=2 ttl=51 time=394.129 ms
64 bytes from 147.28.0.39: icmp_seq=2 ttl=51 time=392.129 ms
64 bytes from 147.28.0.39: icmp_seq=4 ttl=51 time=396.275 ms
64 bytes from 147.28.0.39: icmp_seq=4 ttl=51 time=349.356 ms
--- 147.28.0.39 ping statistics --5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 349.356/384.627/396.275/17.720 ms

Testing at layer 3 (contd)

- Sending large-sized pings can be useful
 - larger packets are more sensitive to bit errors and ethernet collisions
- ping -s1472 -c100 147.28.0.39
 - 20 bytes IP header + 8 bytes ICMP header + 1472 bytes data = 1500 byte datagram
 - You need to be "root" to do this
- pings are not TCP or UDP, but ICMP
 - Internet Control Message Protocol

23

Testing at layer 3 (contd)

- "traceroute" sends a series of packets and uses this to show the intervening routers
- Unix: traceroute -n 147.28.0.39
- Windows: tracert -d 147.28.0.39
- The -n/-d flag is used to prevent DNS lookups. Use it!
 - If you have a networking problem, you don't want to have the additional uncertainty of whether your DNS servers are working or reachable

Testing at layer 3 (contd)

- "tcpdump" shows you packets going in and out of an interface
- tcpdump -i fxp0 -n -s1500 -X
- Use a filter to select packets of interest
- tcpdump -i fxp0 -n -s1500 -X tcp port 80
 TCP packets to or from port 80 only
- tcpdump -i fxp0 -n -s1500 -X host 192.168.0.1
 all packets to or from that host only
- The '-n' flag prevents DNS lookups; use it.

25

Testing at layer 4/7

- Many Internet layer 7 protocols use plaintext messages. You can therefore drive them directly from a keyboard.
- "telnet" can be used to open a TCP connection to a remote server
 - there is no equivalent for UDP
 - the port number selects which server you want
- Once the connection is open, you type layer 7 messages for whichever application protocol is running on this port

27

Example: fetching web pages without a web browser!

```
$ telnet www.nsrc.org 80
Prying 128.223.162.27...
Connected to www.nsrc.org.
Escape character is '^'.

JET / HTTP/1.0 [Enter]
HOSt: www.nsrc.org [Enter]
[Enter]
HTTP/1.1 200 OK
Server: JavaWebServer/1.1.1
Content-Length: 6307
Content-Type: text/html
Last-Modified: Mon, 27 Dec 2004 13:55:20 GMT
Connection: close
Date: Thu, 30 Dec 2004 14:34:45 GMT

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"> ...
```

This is an enormously useful tool for debugging

- e.g. when testing a web server
- eliminates any possible errors with web browser (because you're not using one!)
- see all the raw HTTP response headers, which the web browser usually hides from the user
- also check in your web server's log file to see how the request was handled

If you don't know where to start?

- Do a layer 3 test (ping the remote host)
- If ping works: you likely have an application problem. Perform layer 4/7 tests.
- If ping doesn't work, then there is a networking problem
 - check you can ping other machines on the same LAN as you
 - ping nearby routers and ones further away until you find the area of the problem

Testing and debugging

- Any questions?
- Reminder: if you've forgotten what the "-c" flag to "ping" does, how can you find out?
- Simple practical exercise

The Internet Protocol (IP)

- Layer 3 in the TCP/IP stack
- Delivers chunks of data "datagrams" across an internetwork
- Scales to global network The Internet
- Integrates different LAN technologies
- RFC 791 (IPv4)

31

33

IP Datagram Structure

MTU (Maximum Transmission Unit)

HEADER DATA

- Header
 - Source IP address where it came from
 - Destination IP address where it is going to
 - Header checksum
 - Other fields (TTL, Layer 4 protocol identifier, Fragmentation information)
- Data
 - The actual data you want to carry
- Total size up to MTU bytes
 - What limits the MTU?

IP Addresses / IP Numbers

- IP number identifies a device (host)
- Globally unique for every host
 - Why?
- Independent of layer 2 addresses
- 32 bit binary number

Example:

11001110000110111110111000000101

IP numbers (continued)

- Convert to decimal for convenience
- Group into bytes (8 bits) and convert each in turn; separate with periods

11001110 00011011 11101110 000000101 206 27 238 5

 There is nothing special about the 8 bit boundaries; to the computer it is still a single 32 bit number

Binary to Decimal conversion

= 27

Class Examples

Convert the following IP numbers to decimal:

10000010001110110000101000011110

100100110001110000000000000100111

37

Decimal to Binary conversion

Keep subtracting to find all the bits

Or cheat by using a conversion table :-)

Class Example

Convert the following IP number to binary

128.223.162.27

39

Properties of IP numbers

- What is the smallest IP number?
- What is the largest IP number?
- How many IP numbers are there altogether?

Where do you get IP numbers?

- We must ensure they are unique
- Get a block of IP addresses from upstream provider (Local Internet Registry)
- Local registry gets larger block from regional registry
 - ARIN (Americas), RIPE (Europe), APNIC (Asia/Pacific), LACNIC (Latin America/Carribean), AFRINIC (Africa)
- Regional registry gets them from IANA the Internet Assigned Numbers Authority

Allocation of IP addresses

"Provider-based allocation"

- Ensures uniquess of IP addresses
- Addresses used by one ISP are contiguous
- This helps keep routing tables small see later
- Unfortunately means that if you change ISP, you have to renumber your network

IP address ranges

- IP ranges are given as PREFIXES
- First "n" bits of number are fixed, remaining bits you are free to allocate
- n is called the Prefix Length and is written /n

Example: 206.27.244.64/27

43

Prefix Example

- 206.27.244.64/27
- 1. Convert to binary

11001110 00011011 11110100 01000000

2. Treat as 32 bit number, divide at prefix

1100111000011011111110100010 00000 27 bits of prefix - Fixed 5 bits host number - free to use

45

Prefix Example (continued)

3. Calculate lowest IP number and convert back to decimal

1100111000011011111110100010<u>00000</u> 11001110 00011011 11110100 01000000 206.27.244.64

Prefix Example (continued)

 How many IP numbers does a /27 prefix give you?

Prefixes and IP numbers

 Notice the difference between a Prefix and an IP number

206.27.244.64 - One IP number
206.27.244.64/27 - A whole *range* of IP numbers

A /32 prefix is also a single IP number

The "Golden Rules" for allocating IP numbers

- 1. All hosts on the same network (layer 2) must have the SAME unique prefix
- 2. All hosts must have DIFFERENT host numbers (the part after the prefix)
- 3. Host numbers of all 0's and all 1's are reserved and must not be used for hosts

49

Using the Golden Rules

• 206.27.244.64/27

Why the Golden Rules?

- Just looking at one prefix gives you the path to all the hosts on a network
- Ensure uniqueness of IP addresses

More Examples

51

"Classful" addresses

- In the old days, IP space was broken up into fixed "classes"
 - Class A: addresses beginning with '0' (binary)
 0-127.x.x.x, Prefix length /8
 - Class B: addresses beginning with '10'
 128-191,x,x,x, Prefix length /16
 - Class C: addresses beginning with '110'
 191-223,x,x,x,x, Prefix length /24
- This was wasteful of IP addresses
 - Now have CIDR: Classless Interdomain Routing
 - But Class D (224-239), Class E (240-255) still special cases

Nowadays, prefixes must be given explicitly

- Some software lets you enter e.g. "/27"
- Older software requires you to enter a "netmask"
 - /27 = 27 ones followed by 5 zeros
 - 11111111 11111111 11111111 11100000
 - 255.255.255.224 (decimal)
 - 0xfffffe0 (hex)
- Just use a conversion table