
Security with SSH

PacNOG10
Noumea, New Caledonia

John Kemp

Outline

Installing SSH

Enable/Configure SSH

Clients for Windows

Client/Server (Host) Authentication

Client/User (Key) Authentication

Cryptography

Main Security Concerns

SSH applies directly to dealing with these two
areas of security:

Confidentiality
Keeping our data safe from prying eyes

Authentication and Authorization
Is this person who they claim to be?

Where to Get SSH

By default, most Unix systems will have at least the
SSH client installed. In Ubuntu:
% ssh -V
% dpkg -l ¦ grep ssh
% ps -ef ¦ grep sshd
% sudo apt-get install openssh-server
% sudo apt-get install openssh-client
(same as saying)
% sudo apt-get install ssh

NOTE: ssh is the client, sshd is the daemon/server

Enable and Configure OpenSSH

 You should make sure that ssh is enabled:
NOTE: this job is an “upstart/init” job so...

% sudo service ssh status
% ls -l /etc/init/ssh.conf
% ls -l /etc/init.d/ssh

 Take a look at /etc/ssh/ssh_config and /etc/sshd_config.

PermitRootLogin yes/no (you generally want “no”)

Where to Get SSH Clients for Windows

There are several free, shareware, and commercial ssh
clients for Windows:

See http://www.openssh.org/windows.html for a list.

A few that support protocol version 2 include:
Putty: http://www.chiark.greenend.org.uk/̃sgtatham/putty/
OpenSSH for Windows (using Cygwin):

http://www.cygwin.com/
http://sshwindows.sourceforge.net/

Secure Shell from ssh.com (free for personal use):
� http://www.ssh.com/products/ssh/download.cfm

http://www.openssh.org/windows.html
http://www.openssh.org/windows.html
http://www.ssh.com/products/ssh/download.cfm
http://www.ssh.com/products/ssh/download.cfm

For a comparison of SSH Version 1 and 2 see:
 http://www.snailbook.com/faq/ssh-1-vs-2.auto.html
 An excellent book on SSH is:
 SSH, The Secure Shell
 The Definitive Guide,
 Second Edition.
 By Daniel J. Barrett,
 Richard Silverman, &
 Robert G. Byrnes

More SSH References

http://www/
http://www/

SSH Connection Methods

Several things can happen when using SSH to connect
from your machine (client) to another machine
(server):

 Server's public host key is passed back to the client
� and verified against known_hosts

 Password prompt is used if public key is accepted, � or
already on client, or

 RSA/DSA key exchange takes place and you must
� enter in your private key passphrase to

SSH Quick Tips

You have a choice of authentication keys - RSA is the default (dsa is fine as
well).

The files you care about are:
�
� /etc/ssh/ssh_config
� /etc/ssh/sshd_config
� ̃/.ssh/id_dsa and id_dsa.pub
� ̃/.ssh/id_rsa and id_rsa.pub
� ̃/.ssh/known_hosts
� ̃/.ssh/authorized_keys
� And, note the rsa/dsa host-wide key files in /etc/ssh

Be sure that you do “man ssh” and “man sshd” and read the entire
descriptions for both the ssh client and ssh server (sshd).

SSH Authentication

Private key can be protected by a passphrase
So you have to give it each time you log in
Or use "ssh-agent" which holds a copy of your
passphrase in RAM

No need to change passwords across dozens of
machines

Disable passwords entirely!
/etc/ssh/ssh_config
PasswordAuthentication yes

Man in the Middle Attacks

The first time you connect to a remote host,
remember its public key
Stored in ̃/.ssh/known_hosts

The next time you connect, if the remote key is
different, then maybe an attacker is
intercepting the connection!

Or maybe the remote host has just got a new
key, e.g. after a reinstall. But it's up to you to
resolve the problem

Exchanging Host Keys
First time connecting with ssh:

ssh username@pc1.ws.nsrc.org
The authenticity of host 'pc1.ws.nsrc.org (202.4.34.65)' can't be established.
DSA key fingerprint is 91:ba:bf:e4:36:cd:e3:9e:8e:92:26:e4:57:c4:cb:da.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'pc1.ws.nsrc.org, 202.4.34.1' (DSA) to the list of known hosts.
username@pc1.ws.nsrc.org's password:

At this point the client has in the file ~/.ssh/known_hosts the contents of pc1.ws.nsrc.org's /etc/ssh/
ssh_host_dsa_key.pub.

Next connection:

[hallen@hallen-lt .ssh]$ ssh usrname@pc1.ws.nsrc.org
username@pc1.ws.nsrc.org's password:

Now trusted - Not necessarily a good thing...

mailto:username@pc1.ws.nsrc.org
mailto:username@pc1.ws.nsrc.org
mailto:username@pc1.ws.nsrc.org
mailto:username@pc1.ws.nsrc.org
mailto:usrname@pc1.ws.nsrc.org
mailto:usrname@pc1.ws.nsrc.org
mailto:username@pc1.ws.nsrc.org
mailto:username@pc1.ws.nsrc.org

Exchanging Host Keys Cont.
Command Key Type Generated Public File

ssh-keygen -t rsa RSA (SSH protocol 2) id_rsa.pub
ssh-keygen -t dsa DSA (SSH protocol 2)id_dsa.pub

- Default key size is 1024 bits
- Public files are text
- Private files are encrypted if you use a
 passphrase (still text)

Corresponding file on the host for host key exchange is
“known_hosts”.

Exchanging Host Keys Cont.
How does SSH decide what files to compare?

Look in /etc/ssh/sshd_config. For OpenSSH version 3 the server defaults to
protocol 2 .

By default OpenSSH version 2 client connects in this order:
 RSA version 2 key
 DSA version 2 key
 Password based authentication (even if RSA
 version 1 key is present)

Pay attention to the “HostKeyAlgorithms” setting in /etc/ssh/ssh_config to help
determine this order - or use ssh command line switches to override these
settings.

Basic concept to understand how an SSH connection is made
using RSA/DSA key combination:
Client X contacts server Y via port 22.
Y generates a random number and encrypts this using X's public key.

X's public key must reside on Y. You can use scp to copy this over.
Encrypted random number is sent back to X.
X decrypts the random number using it's private key and sends it back

to Y.
If the decrypted number matches the original encrypted number, then

a connection is made.
The originally encrypted random number sent from Y to X is the “Magic

Phrase”

SSH - “Magic Phrase”

Now I'll ask you to do the following

Create public/private keys and copy them
between neighbor machines

Copy your public key to /root/.ssh on neighbor's
machine

Coordinate with your neighbor to update /etc/
ssh/sshd_config

Consider the power of scp -r

Exercises

The Topic You've Been Waiting For...

You can use SSH to tunnel insecure services in a
secure manner.

SSH tunneling services includes authentication
between known_hosts, password challenge,
and public/private key exchanges.

You can even indirectly tunnel via an
intermediary machine.

Tunneling with SSH

The basic concept looks like this:

Connect from one machine to another as username.
Use ssh options to specify the port number on the
remote machine that you wish to forward to the
port on your local machine.

Your ssh connection will “tunnel” data securely across
ssh from the remote machine to your local machine.

There are several options to be aware of.

Tunneling with SSH Cont.

Tunneling lets you securely access basic services such
as POP and IMAP.

You can securely tunnel ports using SSH.
You can use /etc/services to verify you are not using a
port that is already defined.

Only admin can redfine ports below 1024.
You can tunnel ports directly between two machines,
and indirectly with a machine in the middle.

Tunneling with SSH Conclusion

