

## Campus Networking Workshop

Networking Fundamentals
Refresher



01110101101011000110101010001110

#### Objectives

- To revise the core concepts
- To ensure we are using the same terminology





#### What is this?







#### Layer 1: Physical Layer

- Transfers a stream of bits
- Defines physical characteristics
  - Connectors, pinouts
  - Cable types, voltages, modulation
  - Fibre types, lambdas
  - Transmission rate (bps)
- No knowledge of bytes or frames

101101



### Layer 2: (Data)Link Layer

- Organises data into frames
- May detect transmission errors (corrupt frames)
- May support shared media
  - Addressing (unicast, multicast) who should receive this frame
  - Access control, collision detection
- Identifies the layer 3 protocol being carried



### Layer 3: (Inter)Network Layer

- Connects Layer 2 networks together
  - Forwarding data from one network to another
- Universal frame format (datagram)
- Unified addressing scheme
  - Independent of the underlying L2 network(s)
  - Addresses organised so that it can scale globally (aggregation)
- Identifies the layer 4 protocol being carried
- Fragmentation and reassembly





#### Layer 4: Transport Layer

- Identifies the endpoint process
  - Another level of addressing (port number)
- May provide reliable delivery
  - Streams of unlimited size
  - Error correction and retransmission
  - In-sequence delivery
  - Flow control
- Or might just be unreliable datagram transport

#### Layers 5 and 6

- Session Layer: long-lived sessions
  - Re-establish transport connection if it fails
  - Multiplex data across multiple transport connections
- Presentation Layer: data reformatting
  - Character set translation
- Neither exist in the TCP/IP suite: the application is responsible for these functions





### Layer 7: Application layer

- The actual work you want to do
- Protocols specific to each application
- Examples?





## IP Layers

| Application  |                   | SMTP                                   | нтте | FTP     | Telne | DNS           | BootP<br>DHCP                      | SNMP        | etc.                |  |
|--------------|-------------------|----------------------------------------|------|---------|-------|---------------|------------------------------------|-------------|---------------------|--|
| Presentation | (MIME)            |                                        |      |         |       |               |                                    |             |                     |  |
| Session      | Routing Protocols |                                        |      |         |       |               |                                    |             |                     |  |
| Transport    |                   | TCP<br>(Transmission Control Protocol) |      |         |       | (User D       | UDP<br>(User Datagram<br>Protocol) |             | OSPF BGP<br>RIP EGP |  |
| Network      |                   | ICMP ICMP DARR                         |      |         |       |               |                                    |             |                     |  |
| Link         |                   | IP Transmission over ARP RARP          |      |         |       |               |                                    |             |                     |  |
| Physical     |                   | RFC 1                                  |      | RFC 104 |       | .25<br>: 1356 | FR<br>RFC 149                      | PP<br>RFC 1 |                     |  |





#### Encapsulation

- Each layer provides services to the layer above
- Each layer makes use of the layer below
- Data from one layer is encapsulated in frames of the layer below





#### Encapsulation in action



- L4 segment contains part of stream of application protocol
- L3 datagram contains L4 segment
- L2 frame contains L3 datagram in its data portion

#### Example Layer 2: Ethernet

Header 

Header 

Dest Src Preamble MAC Proto Information CRC Gap

- MAC addresses
- Protocol: 2 bytes

UNIVERSITY OF OREGON

- e.g. 0800 = IPv4, 86DD = IPv6
- Preamble: carrier sense, collision detection

# Example Layer 3: IPv4 Datagram



- IPv4 addresses
- Protocol: 1 byte
  - e.g. 6 = TCP, 17 = UDP (see /etc/protocols)





#### Example Layer 4: UDP



- Port numbers: 2 bytes
  - Well-known ports: e.g. 53 = DNS
  - Ephemeral ports: ≥1024, chosen dynamically by client

#### Addressing at each layer

- What do the addresses look like?
- Where do they come from?
- Examples to consider:
  - L2: Ethernet MAC addresses
  - L3: IPv4, IPv6 addresses
  - L4: TCP and UDP port numbers





#### IPv4 "Golden Rules"



- 1. All hosts on the same L2 network must share the *same* prefix
- 2. All hosts on the same subnet have different host part
- Host part of all-zeros and all-ones are reserved





#### Subnetting Example

- You have been given 192.0.2.128/27
- How many addresses are available?
- You want to build two Layer 2 networks
- Can you split this address space into two equal-sized pieces?
  - What are they?





#### IPv6 rules

- 128-bits of address
- As with IPv4, each Layer 2 network needs its own prefix
- But with IPv6, every network prefix is /64
  - (OK, some people use /126 for P2P links)
- The remaining 64 bits can be assigned by hand, or picked automatically
  - e.g. derived from NIC MAC address
- There are special prefixes, e.g. link local





### Types of equipment

- Layer 1: Hub, Repeater
- Works at the level of individual bits



- All data sent out of all ports
- Hence data may end up where it is not needed





## Types of equipment (contd)

- Layer 2: Switch, Bridge
- Receives whole layer 2 frames and selectively retransmits them
- Learns which MAC addr is on which port
- If it knows the destination MAC address, will send it out only on that port
- Broadcast frames must be sent out of all ports, just like a hub
- Doesn't look any further than L2 header





## Types of equipment (contd)

- Layer 3: Router
- Looks at the dest IP in its Forwarding Table to decide where to send next
- Collection of routers managed together is called an "Autonomous System"
- The forwarding table can be built by hand (static routes) or dynamically
  - Within an AS: IGP (e.g. OSPF, IS-IS)
  - Between ASes: EGP (e.g. BGP)





## Building networks at Layer 1

What limits do we hit?







### Building networks at Layer 2

What limits do we hit?







#### **Traffic Domains**







#### For discussion

- Can you give examples of equipment which operates at layer 4? At layer 7?
- At what layer does a wireless access point work?
- What is a "Layer 3 switch"?





#### **Debugging Tools**

- What tools can you use to debug your network
  - At layer 1?
  - At layer 2?
  - At layer 3?





#### Other pieces

- What is MTU? What limits it?
- What is ARP?
  - Where does it fit in the model?
- What is ICMP?
  - Where does it fit in the model?
- What is NAT? PAT?
  - Where do they fit in the model?
- What is DNS?
  - Where does it fit in the model?



