Network Design Workshop

- How can we achieve high availability?
 - Protect your network against a single device failure affecting all of your network
 - Introduce hardware resiliency and backup paths
 - Different techniques depending on the layer
 - Relationship between reliability, complexity and cost
 - The trick is to balance all variables and come up ahead

- You need to evaluate your needs
 - Minimal need
 - Network just needs to be up for a portion of the day
 - Downtime is easily scheduled after working hours
 - Business is not impacted if the network is down
 - Users' productivity is not impacted by a network failure

- Medium need
 - Network needs to be available for most of the day
 - Only centralized servers need to be up 24 hours/day
 - Downtime needs to be scheduled on weekends
 - If critical parts of the network fail, the business operation is impacted
 - A network failure affects user productivity

- High need
 - Network needs to be up 24x7
 - Downtime needs to be scheduled well in advance and completed within schedule
 - A network failure causes major loss of business
 - User productivity drastically impacted by a network failure

- Methods
 - Component Redundancy
 - Duplicate or backup parts
 - Power supplies, fans, processors, etc.
 - Server Redundancy
 - Protect your data with backups
 - Use of hot standby servers
 - Use of load balancers
 - Network Link & Data Path Redundancy
 - Provide physical redundant connections between devices
 - Allow for hot backup paths (STP) and parallelism (routing)

- At core and distribution layers
 - Add redundant routers and provide dual paths to each from the lower layer
 - Make sure that you have redundant power supplies in your devices
 - This also assumes two different sources of power
 - Think about the possibility of dual routing/forwarding engines
 - Weigh this against the use of two devices
 - Or just throw that in there as yet another layer of reliability

- So I built all this redundancy and high availability in my network, how can my end users take advantage of it?
 - You are already providing more that one router for each subnet
 - You want to provide your users with a way to move their traffic from one default gateway to another

- If one of the routers fails the other one will continue to provide services to the segment
 - Be aware that redundancy is not the same as load balancing

- Current solutions:
 - Hot Standby Redundancy Protocol HSRP (Cisco Proprietary, RFC2281)
 - Virtual Router Redundancy Protocol VRRP (RFC3768)
 - Gateway Load Balancing Protocol GLBP (Cisco Proprietary)

- The concept is very similar in all three
 - Workstations get configured with a single default gateway
 - Routers negotiate who will be the default gateway
 - They keep track of the state of the other routers
 - On router failure, standby router becomes the primary/active
 - Traffic from the workstations will go to the primary/active router
 - Incoming traffic into the segment will follow the routing decisions made by routers in the network

HSRP

VRRP

GLBP

Virtual GW: 10.0.0.1

Virtual MAC: 0007.b400.0102

- Which one should I use?
 - They all allow for a common default gateway and MAC address
 - VRRP is standardized
 - HSRP/GLBP are Cisco proprietary
 - GLBP provides load balancing
 - HSRP/VRRP do not (without introducing complexity)

- VRRP can reuse the default gateway IP
 - HSRP cannot
- HSRP/GLBP support IPv6
 - VRRPv3 supports IPv6, but it is not widely available yet
- VRRP uses protocol 112 & 224.0.0.18
 - HSRP uses UDP/1985 & 224.0.0.2
 - GLBP uses UDP/3222 & 224.0.0.102

- All this redundancy and high availability is not going to do you any good if:
 - You don't test it
 - Make sure that it actually works the way you expect
 - You don't monitor it
 - If the redundant devices or links are down, it won't work!