

Problems with IPv4

- Address space limited and poorly distributed
 - IANA allocated the last blocks to the RIRs in January 2011!
 - This is actually THE most important problem
- Variable size header
- Not flexible for adding new extensions and options
- QoS is an add-on
- Authentication and privacy are add-ons

Changes in Headers

- Version: No changes (4 or 6)
- Header Length: Not necessary since IPv6 header is of fixed length
- Type of Service: Renamed as Traffic Class
- Flow Label: Added for identifying flows
- Total Length: Now specifies payload length
- Identification, Flags, Fragment Offset: Functions moved to the fragmentation header extension

Changes in Headers

- Time To Live: Renamed as Hop Limit (makes more sense)
- Protocol: Now called Next Header
- Header Checksum: Removed for better efficiency
- Source/Destination Address: Now have 128 bits instead of 32
- Options and Padding: Removed

IPv4 Header

			0
Version IHL	Type of Service	<u>.</u>	
Identi	fication	Flags	Fragment Offset
Time to Live	Protocol	1	
I	Source A	ddress	-+-+-+-+-+-+-+-+-+-
I	Destination	Address	-+-+-+-+-+-+-+-+-+-
I	Options		Padding -+-+-+-+-+-+-+-+-+-+-

Removed Changed

IPv6 Header

+-+-+	-+	-+
	Payload Length Next Header Hop Limit	1
+		+
+	Source Address	+
+		+
+-+-+	-+	-+
+		+
+	Destination Address	+
+		+
+-+-+	-+	-+

- Traffic Class (Priority)
- Flow label
 - All common packets must have same source, destination and flow label
 - Flow label can identify different flows within the same two endpoints
 - Handling of flows is determined by some control plane protocol, such as RSVP (Resource reSerVation Protocol)

Recognizing flows in IPv4 vs IPv6

source port	destination port
UDP length	UDP checksum
dat	a

Hop-by-Hop Options header
Destination Options header
Routing header
Fragment header
Authentication header
Encapsulating Security Payload header
Destination Options header

upper-layer header

Next Header

Value	Header
0	Hop-by-Hop Options
6	TCP
17	UDP
58	ICMPv6
60	Destination Options

Next-header Field

IPv6 Header Next = TCP	TCP Header	Application D	ata	
	<u></u>			
IPv6 Header Next = Routing		TCP Header	Application	Data
IPv6 Header Next = Routing	Routing Hdr Next = Frag	Fragment Hdr Next = TCP	TCP Header	Data Frag
	✓			•

Extension Headers

- Replace optional headers in IPv4
 - Options seldom used
- Lengths are multiples of 8 bytes (64 bits)
- An IPv6 implementation must support:
 - Hop-by Hop Options
 - Routing
 - Fragment
 - Destination
 - Authentication
 - Encapsulating Security Payload

Extension Headers

Version	Class	Flow Label	
·•	Payload Length	Next Header	Hop Limit
- -		Source Address	Hop Limit
- -	De	estination Address	
	Hop-by	/-Hop Options Header	
	Destina	tion Options Header ⁽¹⁾	
	F	Routing Header	90
	F	ragment Header	Extension Headers
	Authe	entication Header ⁽²⁾	tension
_	Encapsulating	Security Payload Header	
	Destinat	tion Options Header ⁽³⁾	
	Uppe	er Layer Header(s)	

Extension Headers

Hop-by-Hop Options Header

Information analized by each node in the path (0)

Destination Options Header

 Optional information analyzed by the last node in the path (60)

Routing Header

 Lists nodes to be visited on the way from the source to the destination (43)

Routing Header

Fragmentation Header

Used when sending packets larger than the MTU of the data link layer

Authentication Header

Provides authenticity and integrity (51)

	NO PERIOD DE LE PERIODE	6789012345678901
Vext Header	Payload Len	Reserved
	Security Parame	eters Index (SPI)
	Sequence	e Number
H CHIEF CHIEF	Authentics	ation Data

Encapsulating Security Payload (ESP)

Provides confidentiality (and, optionally, integrity, authentication and anti-replay) (50)

Can be used by itself, or in conjunction with AH

Security Paran	neters Index (SPI)	
Sequen	ice Number	Vasta Diota
n anne every anne n	oto (codoble)	
Payload D	lata (variable)	
Pado	ding (0-255 octets)	-781111120-NO 113
	Pad Length	Next Header

Types of Delivery in IPv6

Unicast: To one host.

Destination address is unique

Multicast: To many hosts.

Destination address is shared

Anycast: To the nearest host.

Destination address is shared

Interface identifiers

- 64 bits to identify one interface
- Must be unique within a subnet
- EUI-64: Formula to convert IEEE 802 MAC addresses (48 to 64 bits)
 - Example: MAC adddress 00:0A:95:F2:97:DB
 - Rules
 - Insert FF:FE between the 3rd and 4th bytes
 - Set the universal/local bit to 1 (second to last bit of first byte)
 - 02:0A:95:FF:FE:F2:97:DB

- IPv4 has 32 bits (4 bytes)
 - 130.192.1.143
- IPv6 has 128 bits (16 bytes)
 - 3FFE:0800:1200:300a:2A8:79FF:FE32:1982

- Sequence of 8 grups of 4 hexadecimal digits delimited by ':'
- Notations:
 - 1080:0000:0000:0000:0008:0800:200C:417A
 - 1080:0:0:0:8:800:200C:417A
 - 1080::8:800:200C:417A

Notations

FF01:0:0:0:0:0:0:43 Multicast Address

0:0:0:0:0:0:1 Loopback Address

0:0:0:0:0:0:0 Unspecified Address

Can be represented like this:

FF01::43 Multicast Address

::1 Loopback Address

:: Unspecified Address

CIDR Notation

IPv6-address/Prefix-length

IPv6-address: Any of the previous notations

Prefix-length: Decimal number specifying the length of the prefix

Example: 1080:0:0:8::/80

Valid Notations

60 bits prefix 12AB0000000CD3:

- 12AB:0000:0000:CD30:0000:0000:0000:0000/60
- 12AB::CD30:0:0:0:0/60
- 12AB:0:0:CD30::/60

Invalid Notations

12AB:0000:0000:CD30:0000:0000:0000:0000/60

12AB:0:0:CD3/60

Omitting zeros to the right is not valid within each group of 16 bits

12AB::CD30/60

How to tell how many zeros were omitted on each side?

12AB::CD3/60

Both errors, combined

Special Unicast Addresses

- Unspecified address
 - All zeros (::)
 - Used during initialization
 - Also used to represent the default route
- Loopback address
 - Only last bit set to 1 (::1)
 - Similar to 127.0.0.1 in IPv4

Link Local addresses

- Used for auto-configuration and neighbor discovery
 - 1111111010 (FE)
- Only used within a physical segment
- Routers must not forward any packets with these addresses as either source or destination
- Example:
 - MAC = 08-00-02-12-34-56
 - IPv6 = FE80::A00:2FF:FE12:3456

Multicast Addresses

1111 1111 (FF)

- T=0 permanent, T=1 not permanent
- SCP: limits the scope of the group
- Group ID: Identifies the multicast group

Multicast Scope

0: Reservado

1: Interfaz-local

2: Enlace-local

3: Reservado

4: Admin-local

5: Sitio-local

6: No asignado

7: No asignado

8: Organización-local

9: No asignado

A: No asignado

B: No asignado

C: No asignado

D: No asignado

E: Global

F: Reservado

Address Block Allocation

- RIRs (Regional Internet Registries) have two allocation schemes
 - Service providers obtain /32 blocks
 - Non service providers obtain /48 blocks
- In both schemes, the RIR reserves the next contiguous block in case that demand increases
- RIRs:
 - AFRINIC Africa
 - APNIC Asia/Pacific
 - ARIN North America
 - LACNIC Latin America and Caribbean
 - RIPE Europe/Middle East

Use at the U. Of Oregon

- 2001:468::/32 -> Internet2
 - 2001:468:0d00::/40 -> Oregon GigaPOP
 - 2001:468:0d01::/48 -> U. of Oregon

Address Autoconfiguration

- Assumes that interfaces can provide a unique identifier
- Communication established using link-local addresses
- Facilitates renumbering when (if) changing providers

Neighbor Discovery

Types of Messages

- Router Advertisement
- Router Solicitation
- Routing Redirect
- Neighbor Solicitation
- Neighbor Advertisement

Generate a link-local address

Verify that this address is valid. Send neighbor solicitation to this address (DAD=Duplicate Address Detection)

If no answer, assign this address to the interface. Ready to communicate.

If address is being used:

Either configure manually or generate another address

Send a router solicitation message.

Router responds with router advertisement

Verify the value of the "managed address configuration" flag

If M=1, Must use stateful configuration for address assignment (e.g. DHCP)

If M=0, proceed with stateless configuration (SLAAC)

Verify the value of the "other stateful configuration" flag

If O=1, Must use stateful configuration for the other parameters

If O=0, Terminate the autoconfiguration process

- Stateless Autoconfiguration (SLAAC)
 - Routers must send periodic router advertisement (RA) messages to the all-hosts address
 - The host takes the IPv6 subnet prefix from the RA and uses that to build its own full IPv6 address
 - Only used for addresses

- Stateful Address configuration
 - When a more controlled mechanism is desired
 - Similar to what is done today with IPv4
 - DHCPv6 is the only option today

Dual Stack - IPv6/IPv4

- Routers and hosts can communicate with others using either one
- Makes transition easier for end users

Some Terminology

- Tipes of Nodes:
 - Pure IPv4 node (No IPv6)
 - Dual stack node (IPv6/IPv4) (Understands both versions)
 - Pure IPv6 node (No IPv4)

Dual Stack Scheme

Tunnels

Multihoming

What happens when you have more than one provider?

- At first there was interest in distributing IPv6 blocks hierarchically to keep routing tables small
 - Did not work
- Today, the same strategy is used as with IPv4
 - Provider-Independent (PI) space

DNS

- Not much change there
- Very important since it's almost impossible to remember an IPv6 address!
- Can use either IPv4 or IPv6 as transport
- Recent versions of ISC BIND support IPv6

DNS

- Uses AAAA records to assign IPv6 addresses to names
- You can use both A and AAAA records with the same name
- Inverse resolution uses ip6.arpa
 - Replaces in-addr.arpa

DHCPv6

- Available in ISC DHCPD starting with version 4
- Some notable differences with IPv4 DHCP
 - DHCPv6 does not assign the default gateway
 - Leaves this function to routers (RAs)
 - No mechanism for load balancing or failover yet
- Status of support by different operating systems:
 - Supported by Linux and Windows (Vista and later)
 - Supported by Mac OS X (Lion and later)

References

Web Sites:

Cisco Systems (http://www.cisco.com/ipv6)

http://www.ipv6.org

http://www.6bone.net

http://www.ipv6forum.org

http://playground.sun.com/pub/ipng/html/ipng-main.html

Books:

Internetworking IPv6 with Cisco Routers IPv6 for Cisco IOS

IETF & RFCs

http://www.ietf.org/html.charters/ipv6-charter.html http://www.ietf.org/html.charters/multi6-charter.html http://www.ietf.org/html.charters/v6ops-charter.html