DNSSEC Tutorial

Public / Private Keys

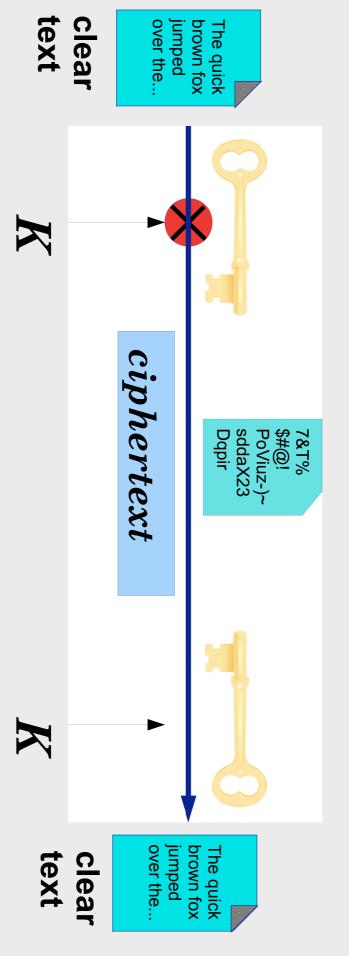
DNSSec and Cryptography

Three Key Concepts

- Public / Private keys
- Message digests, checksums, hashes
- Digital signatures

Are at the core of DNSSEC. If these do not make sense, then DNSSEC will not make sense.

Ciphertext


- We start with *plaintext*. Something you can read.
- We apply a mathematical algorithm to the plaintext
- The algorithm is the cipher.
- The *plaintext* is turned in to *ciphertext*.
- Creating a secure cipher is a difficult process.
- The standardization process for AES, the years replacement for the aging DES protocol, took 5

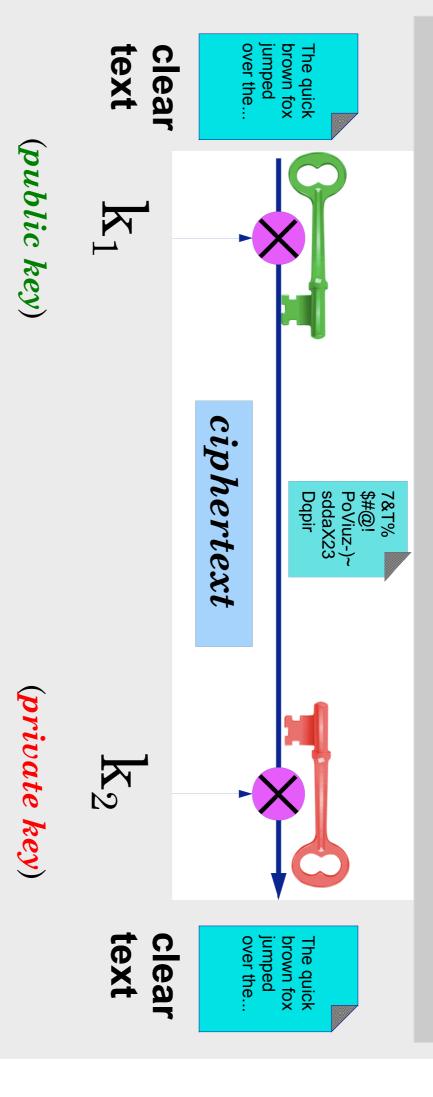
Keys

- In symmetric cryptography, a plaintext is transformed into a *ciphertext*, and back into used) on both ends. plaintext using akey to the cipher (the algorithm
- Assuming that the cipher method is known, the your *plaintext* is compromised. is a critical point. If someone obtains your key, security of the *ciphertext* rests with the *key*. This

Symmetric Cipher

Single Key/Symmetric Ciphers

The same key is used to encrypt the document before sending and to decrypt it once it is received


The Big Question...

Issue: how do you securely distribute the key to the intended receiving party or parties?

Public / Private Keys

- We generate a cipher key pair. One key is the private key, the other is the public key.
- The *private key* remains secret and should be protected.
- The public key is freely distributable. It is related mathematically to the private key, but you cannot (easily) derive the *private key* from the *public key.*
- data. Use the public key to encrypt data. Only someone with the *private key* can decrypt the encrypted

Example Public / Private Key Pair

One key is used to encrypt the document, a different key is used to decrypt it. This is an important aspect!

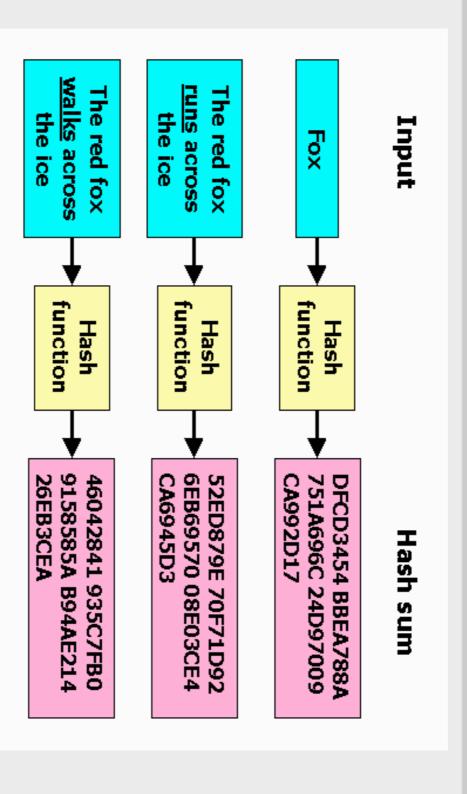
Issues

- For larger data transmissions than used in DNSSEC we use hybrid systems.
- Symmetric ciphers (single key) are much more efficient than public key algorithms for data transmission!
- Attack on the public key is possible via chosen-plaintext attacks. Thus, the *public/private key pair* need to be large (2048 bits).
- calculated symmetric session-key. setup the initial session, and exchange the dynamically For instance, SSH uses public/private cryptography to

Issues

- For larger data transmissions than used in DNSSEC we use hybrid systems.
- Symmetric ciphers (single key) are much more efficient than public key algorithms for data transmission!
- Attack on the public key is possible via chosen-plaintext attacks. Thus, the *public/private key pair* need to be large (2048 bits).
- calculated symmetric session-key. setup the initial session, and exchange the dynamically For instance, SSH uses public/private cryptography to

One-Way Hashing Functions


- A mathematical function that generates a fixed pass through it. Generally very fast. length result regardless of the amount of data you
- You cannot generate the original data from the fixedlength result, thus the term "one-way".
- Hopefully you cannot find two sets of data that is called a collision. (Example, md5). produce the same fixed-length result. If you do, this
- The fixed length result is known as a **Message** Digest or a checksum or a hash.

One-Way Hashing Functions cont.

- The fixed-length result of a hashing function is hash referred to as a checksum, message digest or
- Some popular hashing functions include:
- md5: Outputs 128 bit result. Fast. Collisions found. http://www.mscs.dal.ca/~selinger/md5collision/
- sha-1: Outputs 160 bits. Slower. Collisions in 263
- sha-2: Outputs 224-512 bits. Slower. Collisions expected (280 attack).
- sha-3: TBA: Currently in development via a new N/ST Hash Function Competition:

http://csrc.nist.gov/groups/ST/hash/sha-3/

Hashing another example

sizes. This is extremely useful. input. Note that the hash sum is the same length for varying input Note the significant change in the hash sum for minor changes in the

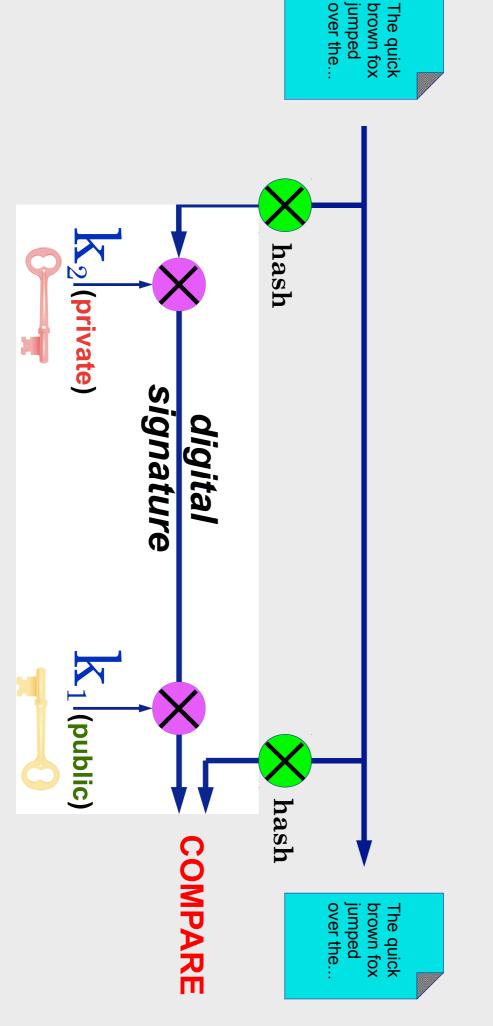
What use is this?

There are several:

- Passwords encryption (in Linux, Unix and Windows), using multiple rounds of hashing (MD5 or other)
- You can run many megabytes of data through a hashing function, but only have to check a fixed used to create a digital signature. number of bits of information (160-512 bits). This is

Digital Signatures

Reverse the role of public and private keys.


To create a digital signature on a document do:

- Hash a document, producing a message digest
- 1. Encrypt the *message digest* with your private key
- Send the document plus the encrypted message digest.
- On the other end *hash* the document and decrypt the encrypted message digest with the person's public key.
- 1. If the results match, the document is authenticated

This process creates a digital signature.

When Authenticating:

Take a hash of the document and encrypt only that. An encrypted hash is called a "digital signature"

Conclusion

- Public / Private keys
- Message digests, checksums, hashes
- Digital signatures

Are at the core of DNSSEC.