Campus Network Best Practices: RENs Around the World

Dale Smith Network Startup Resource Center dsmith@nsrc.org

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Research and Education Networks

- Some Terminology
 - Research and Education = R&E
 - Research and Education Networks = REN
 - National REN = NREN
- Globally, the REN connectivity is very complex and very difficult to understand

REN Characteristics

- High bandwidth networks
 - 10G backbones with 40G and 100G coming
 - Research typically needs uncongested networks
 - Which means many RENs are lightly used with lots of unused capacity (we call it headroom)
- Low latency
 - Terrestrial fiber
- Open Networks with no filtering
 - Firewalls can make it hard for ad-hoc activities

Why a REN?

- Enable research or services that could not be accomplished otherwise
- Cost Savings (buyers club)
 - Aggregate demand from multiple parties
- Vision of building alliances
- Successful RENs find that there are unanticipated benefits

Why Are We Doing This?

- Our goal is to build networking capacity to support Research and Education
 - Remember: University = Research & Education
- Buying all service from Telephone Company is a losing game
- The pattern around the world is to build regional, national, and larger Research and Education Networks (RENs)

REN versus Campus Network

- The Campus Network is the foundation for all Research and Education activity
- Without a good campus network, the Research and Education Network can't work as well as it should
- The campus network is the foundation that the REN is built upon

What are Our Goals?

- Network Design Goals
 - Reliability/Resiliency
 - Performance
 - Manageability
 - Must have this to find problems and viruses
 - Scalability
 - Need to be able to grow as needs grow
- Need this in the campus and the REN

REN Ecosystem

- A layered model
 - Global Connectivity
 - Regional RENs
 - National Research and Education Networks
 - All users are connected at the campus network level
 - No scientist is connected directly to a National Network. They are all connected to campus or enterprise networks

Typical REN Architecture

REN Topics

- A look at the Global and Regional REN environment
- A closer look at USA RENs
- How does this relate to South Asia
- NREN IP Transport Models
- Technical Requirements for campus networks and NRENs

Global REN Connections

- Connect Regional or National networks together
- Tend to be longer, more expensive circuits
- Not always well coordinated
- Routing policies often inconsistent
- Always are peering networks

GÉANT At the Heart of Global Research Networking

Regional REN Connections

- Connects RENs of individual countries within a geographic region
 - TEIN3 is a good example
- Some Regional RENs are also Global
 - APAN is a good example

Regional REN Connections

- Most regional networks have funding from European Union
 - EUMedConnect
 - TEIN/TEIN2/TEIN3
 - GEANT
 - ALICE/ALICE2 RedCLARA
 - AfricaConnect/Ubuntunet

RedCLARA March 2011

The Africa Picture

NREN IP Network

- Two basic models:
 - Peering network
 - Exchange traffic between members
 - Provide international connections (GEANT, etc)
 - Can peer with a local commercial exchange (Google, local ISPs, etc)
 - REN provides all Internet connectivity
 - REN is the ISP
 - In this case, REN also provides peering network

Requirements of Members

- REN is Peering Network
 - Each member still has their own ISP
 - Each member must have ASN and run BGP
 - Or they have to do NAT tricks
- REN provides all Internet connectivity
 - TERNET does this
 - Simplest for campus members
 - No ASN or BGP required at campus level

What about Multi Homing?

Making Multi Homing Work

- To make it work right, Multi-homed campus must:
 - Have Provider Independent Address space
 - Have their own ASN
 - Run BGP and speak to both TERNET and their ISP
- That is hard. Isn't there something easier?

Multi Homing without BGP

- If you don't do BGP, then you have to pick one of the two approaches:
 - Split your campus network in two parts: one part connected to their Internet Service Provider and the other part connected to the NREN
 - 2. Use NAT tricks. This only works in the "outbound" direction and doesn't let a campus provide services (databases, video conferencing, etc).

Questions/Discussion?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

