
DNSSEC

Introduction
Principles

Deployment

This document is a result of work by the Network Startup Resource Center (NSRC at http://nsrc.org). This document may be
freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Overview

•  What we will cover:
–  The problems that DNSSEC addresses
–  The protocol and implementations
–  Things to take into account to deploy

DNSSEC
–  The practical problems tied to real-world

deployment

Overview

l We plan to do a live zone signing
demonstration and we will have instructions
and tools available so that you may follow
along if you have your own laptop with SSH
(download Putty if using Windows)

Contents

•  Scope of the problem
•  DNS reminders
•  DNSSEC concepts
•  Deployment & operations
•  Issues (what isn't solved) & other aspects
•  Status of DNSSEC today
•  Live demonstration

What are the issues?
•  DNS Cache Poisoning
•  Inject forged data into the cache by either:

– a) returning additional (forged) data outside the
scope of the original query

– b) responding to the caching server with forged
data before the authoritative server's answer is
received

•  First issue fixed 20 years ago
•  Second issue theoretically very difficult until

Dan Kaminsky in 2008

What are the risks?
•  Misdirection of queries for an entire

domain
– Response to non-existent domains
– MX hijacking
– Make a large domain (SLD or TLD) domain

“disappear” from an ISP's cache – DoS
–  Identity theft using SSL stripping attacks

(banks, eGovernance)
– More fun stuff…

Is this all theoretical?
•  These have been spotted in the wild, and

code IS available…
– See Dan Kaminsky's slides for a more details

& scenarios
– A great illustrated guide
– http://unixwiz.net/techtips/iguide-kaminsky-

dns-vuln.html

Refresher

DNS reminders
l ISC BIND zone file format is commonly used,
and we will use this notation here.
zone. SOA nsX.zone. hostmaster.zone.
 (2009022401 ; serial
 1d ; refresh
 12h ; retry
 1w ; expire
 1h) ; neg. TTL

zone. NS ns.zone.
 NS ns.otherzone.

zone. MX 5 server.otherzone.
www.zone. A 1.2.3.4
...

DNS reminders

l Record structure:

NAME [TTL] TYPE DATA (type specific)
--
host.zone. 3600 A 10.20.30.40
sub.zone. 86400 MX 5 server.otherzone.

DNS reminders

l Multiple resource records with same name and type
are grouped into Resource Record Sets (RRsets):

mail.zone. MX 5 server1.zone.
mail.zone. MX 10 server2.zone.

server1.zone. A 10.20.30.40
server1.zone. A 10.20.30.41
server1.zone. A 10.20.30.42

server1.zone. AAAA 2001:123:456::1
server1.zone. AAAA 2001:123:456::2

server2.zone. A 11.22.33.44

RRset

RRset

RRset

RRset

DNS points of attack

DNS Data Flow
Points of attack

STUB
resolver

caching
resolver

(recursive)

MASTER

SLAVES SLAVES

zone
file

(text,
DB)

dynamic
updates

man in
the

middle
cache

poisoning
modified

data

Zone
Transfer

spoofing
master

(routing/
DoS)

spoofed
updates

corrupted
data AT

TA
C

K
VE

C
TO

R
S

D
AT

A

DNSSEC concepts

DNSSEC in a nutshell

•  Data authenticity and integrity by
signing the Resource Records Sets
with a private key

•  Public DNSKEYs published, used to
verify the RRSIGs

•  Children sign their zones with their
private key

DNSSEC in a nutshell

•  Authenticity of that key established by
parent signing hash (DS) of the child zone's
key

•  Repeat for parent…
•  Not that difficult on paper

–  Operationally, it is a bit more complicated

 DSKEY ⇔ KEY –signs→ zone data

Concepts

•  New Resource Records (DNSKEY,
RRSIG, NSEC/NSEC3 and DS)

•  New packet options (CD, AD, DO)
•  Setting up a Secure Zone
•  Delegating Signing Authority
•  Key Rollovers

DNSSEC concepts

l  Changes DNS trust model from one of ”open” and ”trusting”
to one of ”verifiable”

l  Use of public key cryptography to provide:
⋅  Authentication of origin
⋅  Data integrity
⋅  Authenticated denial of existence

l  No attempt to provide confidentiality (NO encryption)
l  DNSSEC does not normally place computational load on
the authoritative servers (!= those signing the zone)

l  No modifications to the core protocol
⋅  Can coexist with today's infrastructure (EDNS0)

DNSSEC concepts

l Build a chain of trust using the existing
delegation-based model of distribution that is the
DNS

“.”

ORG

NSRC

WS

DNSSEC Concepts
•  Don't sign the entire zone, sign a RRset
•  Note: the parent DOES NOT sign the child

zone.
•  The parent signs a pointer (hash) to the

key used to sign the data of child zone (DS
record)

New Resource Records

DNSSEC: new RRs
•  Adds five new DNS Resource Records*:

1.  DNSKEY: Public key used in zone signing operations.
2.  RRSIG: RRset signature
3.  NSEC &
4.  NSEC3: Returned as verifiable evidence that the

name and/or RR type does not exist
5.  DS: Delegation Signer. Contains the hash of the

public key used to sign the key which itself will be
used to sign the zone data. Follow DS RR's until a
”trusted” zone is reached (ideally the root).

•  *See Geoff Huston's discussion at:
http://ispcolumn.isoc.org/2006-08/dnssec.html

DNSSEC: DNSKEY RR

MYZONE. 600 DNSKEY 256 3 5 (

 AwEAAdevJXb4NxFnDFT0Jg9d/jRhJwzM/YTu
 PJqpvjRl14WabhabS6vioBX8Vz6XvnCzhlAx

 ...) ; key id = 5538

TYPE FLAGS OWNER PROTOCOL

- FLAGS determines the usage of the key (more on this...)
- PROTOCOL is always 3 in the current version of DNSSEC
- ALGORITHM can be:
 0 – reserved 5 – RSA/SHA-1 (mandatory in validator)
 1 – RSA/MD5 (deprecated) 8 – RSA/SHA-256
 2 – Diffie/Hellman
 3 – DSA/SHA-1 (optional)
 4 – reserved

ALGORITHM

PUBLIC KEY
(BASE64)

KEY ID

http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xml

DNSSEC: Two keys, not
one...

l There are in practice at least two DNSKEY pairs
for every zone.

l Originally, one key-pair (public, private) defined
for the zone:

l  private key used to sign the zone data (RRsets)
l public key published (DNSKEY) in zone

l DNSSEC works fine with a single key pair...
l Problem with using a single key:

l  Every time the key is updated the, DS record corresponding
to the key must be updated in the parent zone as well

l  Introduction of Key Signing Key (flags = 257)

DNSSEC: KSK and ZSK

l Key Signing Key (KSK)
⋅  pointed to by parent zone in the form of DS (Delegation Signer).

Also called Secure Entry Point
⋅  used to sign the Zone Signing Key (ZSK)

l Zone Signing Key (ZSK)
⋅  signed by the Key Signing Key
⋅  used to sign the zone data RRsets

l This decoupling allows for independent updating of the
ZSK without having to update the KSK, and involve the
parent – less administrative interaction.

DSKSK ⇔ KSK –signs→ ZSK –signs→ RRsets

DNSSEC: Resource Record SIGnature
RRset signed using ZSK

test.myzone. 600 RRSIG A 5 2 600 20090317182441 (

 20090215182441 5538 myzone.

 rOXjsOwdIr576VRAoIBfbk0TPtxvp+1PI0XH
 p1mVwfR3u+ZuLBGxkaJkorEngXuvThV9egBC
 ...
)

TYPE
TYPE

COVERED ALGO # LABELS ORIG. TTL SIG. EXPIR.

2 1

SIG. INCEP.

KEY ID
SIGNER NAME

SIGNATURE = SIG(+) RRSIG-DATA – SIG

test.myzone. 600 A 1.2.3.4
test.myzone. 600 A 2.3.4.5

RRset

DNSSEC: RRSIG

l Typical default values (not a standard, but BP):
–  Signature inception time is 1 hour before
–  Signature expiration is 30 days from now
–  Proper timekeeping (NTP) is required

l What happens when the signatures run out ?
–  SERVFAIL...
–  Your domain effectively disappears from the Internet for

validating resolvers
l Note that the keys do not expire.
l Therefore, regular re-signing is part of the operations
process (not only when changes occur)

l Not all RRsets need be resigned at the same time

DNSSEC: NSEC/NSEC3
l Proof of non-existence using NSEC & NSEC3
l Remember, the authoritative servers are serving
precalculated records. No on-the-fly generation
–  NSEC provides a pointer to the Next SECure record in the chain

of records.
•  “there are no other records between this one and the next”, signed.

–  The entire zone is sorted lexicographically:

myzone. NS …
ace.myzone. A …
bob.myzone. CNAME …
cat.myzone. A …
eel.myzone. MX …

DNSSEC: NSEC/NSEC3
myzone. 10800 NSEC test.myzone. NS SOA RRSIG NSEC DNSKEY

myzone. 10800 RRSIG NSEC 5 1 10800 20090317182441 (
 20090215182441 5538 myzone.

 ZTYDLeUDMlpsp+IWV8gcUVRkIr7KmkVS5TPH
 KPsxgXCnjnd8qk+ddXlrQerUeho4RTq8CpKV
 ...
)

•  Last NSEC record points back to the first.
•  Problem:

•  Zone enumeration (walk list of NSEC records)
•  Public DNS shouldn't be used to store sensitive information but

policy requirements vary.

DNSSEC: NSEC/NSEC3

l If the server responds NXDOMAIN:
⋅ One or more NSEC RRs indicate that the name
(or a wildcard expansion) does not exist

l If the server's response is NOERROR:
⋅  ...and the answer section is empty

è The NSEC proves that the TYPE did not exist

DNSSEC: NSEC/NSEC3
•  What about NSEC3 ?

–  We won't get into details here:
–  Don't sign the name of the Next SECure record, but a

hash of it
–  Still possible to prove non-existence, without revealing

name.
•  This is a simplified explanation. RFC 5155

covering NSEC3 is long!
•  Also introduces the concept of “opt-out” (see

section 6 of the RFC) for delegation-centric zones
•  Don't bother signing RRsets for delegations which

you know don't implement DNSSEC.

DNSSEC: DS
l Delegation Signer
l Hash of the KSK of the child zone
l Stored in the parent zone, together with the
NS RRs indicating a delegation of the child
zone

l The DS record for the child zone is signed
together with the rest of the parent zone
data

DNSSEC: DS

l Two hashes generated by default:
⋅ 1 SHA-1 Mandatory support for validator
⋅ 2 SHA-256 Mandatory support for validator

l New algorithms are being standardised upon
l This will happen continually as algorithms are
broken/proven to be unsafe

•  NS records are NOT signed (they are a hint/
pointer)

myzone. DS 61138 5 1
F6CD025B3F5D0304089505354A0115584B56D683
myzone. DS 61138 5 2
CCBC0B557510E4256E88C01B0B1336AC4ED6FE08C826
8CC1AA5FBF00 5DCE3210

•  digest =
 hash(canonical FQDN on KEY RR | KEY_RR_rdata)

DNSSEC: DS

Digest type 1 = SHA-1, 2 = SHA-256

DNSSEC: new fields/flags
l  Updates DNS protocol at the packet level
l  Non-compliant DNS recursive servers should ignore these:

l  CD: Checking Disabled (ask recursing server to not
perform validation, even if DNSSEC signatures are
available and verifiable, i.e.: a Secure Entry Point can be
found)

l  AD: Authenticated Data, set on the answer by the
validating server if the answer could be validated, and
the client requested validation

l  A new EDNS0 option
l  DO: DNSSEC OK (EDNS0 OPT header) to indicate
client support for DNSSEC options

Demo: the new records

Security Status of Data
(RFC4033 § 5 & 4035 § 4.3)‏

l Secure
l Resolver is able to build a chain of signed
DNSKEY and DS RRs from a trusted security
anchor to the RRset

l Insecure
l Resolver knows that it has no chain of signed
DNSKEY and DS RRs from any trusted starting
point to the RRset

Security Status of Data
(RFC4033 § 5 & 4035 § 4.3)‏

l Bogus
l Resolver believes that it ought to be able to
establish a chain of trust but for which it is unable
to do so

l May indicate an attack but may also indicate a
configuration error or some form of data corruption

l Indeterminate
l No trust anchor to indicate if the zone and children
should be secure.
Resolver is not able to determine whether the
RRset should be signed.

Signing a zone...

Enabling DNSSEC

l Multiple systems involved
⋅  Stub resolvers

è Nothing to be done... but more on that later

⋅  Caching resolvers (recursive)
è Enable DNSSEC validation
è Configure trust anchors manually (or DLV)

⋅  Authoritative servers

è Enable DNSSEC code (if required)
.  Signing & serving need not be performed on same machine
.  Signing system can be offline

Signing the zone
(using the BIND tools)

1. Generate keypairs
2.  Include public DNSKEYs in zone file
3. Sign the zone using the secret key ZSK
4. Publishing the zone
5. Push DS record up to your parent
6. Wait...

1. Generating the keys

Generate ZSK
dnssec-keygen [-a rsasha1 -b 1024] -n ZONE myzone

Generate KSK
dnssec-keygen [-a rsasha1 -b 2048] -n ZONE -f KSK
myzone

This generates 4 files:
 Kmyzone.+005+id_of_zsk.key
 Kmyzone.+005+id_of_zsk.private
 Kmyzone.+005+id_of_ksk.key
 Kmyzone.+005+id_of_ksk.private

2. Including the keys into the
zone

•  Include the DNSKEY records for the ZSK and KSK
into the zone, to be signed with the rest of the data:

 cat Kmyzone*key >> myzone

•  or add to the end of the zone file:

 $INCLUDE “Kmyzone.+005+id_of_zsk.key”
 $INCLUDE “Kmyzone.+005+id_of_ksk.key”

3. Signing the zone

dnssec-signzone myzone

l  dnssec-signzone will be run with all defaults for signature duration, the
serial will not be incremented by default, and the private keys to use for
signing will be automatically determined.

l  Signing will:
l  Sort the zone (lexicographically)
l  Insert:

l  NSEC records (NSEC is default)
l  RRSIG records (signature of each RRset)‏
l  DS records from child keyset files (for parent: -g option)‏

l  Generate key-set and DS-set files, to be communicated to the parent

3. Signing the zone (2)

l  ISC BIND

⋅ Since version 9.7.0, automated zone signing
è Makes life much easier
è Key generation, management & rollover still needs to be
done separately

⋅ Version 9.8.0 introduces inline signing
è Easier integration in existing chain of production

4. Publishing the signed zone

•  Publish signed zone by reconfiguring the
nameserver to load the signed zonefile.

•  ... but you still need to communicate the DS
RRset in a secure fashion to your parent,
otherwise no one will know you use
DNSSEC

5. Pushing DS record to parent

•  Need to securely communicate the KSK derived
DS record set to the parent
–  RFCs 4310, 5011

•  Does the registry/registrars for your TLD support
insertion of DS records?

•  ... but what if your parent isn't DNSSEC-
enabled ?

•  DLV

Enabling DNSSEC in the resolver

l Configure forwarding resolver to validate
DNSSEC

l Test...
l Remember, validation is only done in the
resolver

l Others need to enable DNSSEC validation –
it doesn't help if you are the only one doing it!

Questions so far ?

Summary!

•  Generating keys
•  Signing and publishing the zone
•  Resolver configuration
•  Testing the secure zone

Signature expiration

l Signatures are per default 30 days (BIND)
l Need for regular resigning:
⋅ To maintain a constant window of validity for
the signatures of the existing RRset
⋅ To sign new and updated Rrsets
⋅ Use of jitter to avoid having to resign all
expiring RRsets at the same time

l The keys themselves do NOT expire...
⋅ But they may need to be rolled over...

Key Rollovers

l  Try to minimise impact
l  Short validity of signatures

l  Regular key rollover

l  Remember: DNSKEYs do not have timestamps
l  the RRSIG over the DNSKEY has the timestamp

l  Key rollover involves second party or parties:
l  State to be maintained during rollover

l  Operationally expensive
l  RFC5011 + BIND support

l  See http://www.potaroo.net/ispcol/2010-02/rollover.html

Key Rollovers

l Two methods for doing key rollover

⋅ pre -publish
⋅ double signature

l KSK and ZSK rollover use different methods
(courtesy DNSSEC-Tools.org)

Key Rollovers
•  ZSK Rollover Using the Pre-Publish

Method
1.  wait for old zone data to expire from caches

(TTL)
2.  sign the zone with the KSK and published

ZSK
3.  wait for old zone data to expire from caches
4.  adjust keys in key list and sign the zone with

new ZSK

Key Rollovers

l  KSK Rollover Using the Double Signature Method
1. wait for old zone data to expire from caches
2. generate a new (published) KSK
3. wait for the old DNSKEY RRset to expire from caches
4.  roll the KSKs
5.  transfer new DS keyset to the parent
6. wait for parent to publish the new DS record
7.  reload the zone
• It is also possible to use dual DS in the parent zone

Automated toolkits

•  Luckily, a number of toolkits already exist to
make DNSSEC operations as smooth as
possible

•  Doesn't solve all problems yet, such as
interaction with parent and children (DS
management, …), but take care of all the rough
edges of running a PKI (yes, that's what it is...)

•  http://www.dnssec.net/software
–  www.opendnssec.org
–  www.dnssec-tools.org
–  http://www.hznet.de/dns/zkt/

So, what does DNSSEC
protect ?

STUB
resolver

caching
resolver

(recursive)

MASTER

SLAVES SLAVES

zone
file

(text,
DB)

dynamic
updates

man in
the

middle

cache
poisonin

g
modified

data

Zone
Transfer

spoofing
master

(routing/
DoS)

spoofed
updates

corrupte
d

data

PROTECTION BY DNSSEC

AT
TA

C
K

VE
C

TO
R

S
D

AT
A

(TSIG)

What doesn't it protect ?

l Confidentiality
l The data is not encrypted

l Communication between the stub resolver (i.e:
your OS/desktop) and the caching resolver.

l For this, you would have to use TSIG, SIG(0),
or you will have to trust your resolver

l It performs all validation on your behalf
l Still need to do validation yourself if you don't
trust your upstream's nameservers

Validating the chain of trust

Why the long timeframe ?
• Many different reasons...
l Lack of best practice. Ops experience scarce
l Risks of failure (failure to sign, failure to update)
which will result in your zone disappearing

l Specification has changed several times
è NSEC allows for zone enumeration

l Until 2008, DNSSEC “a solution w/o problem”
l Delay in getting the root signed (politics)
l Increased fragility – resolution less tolerant to
brokenness!

l Failed validation penalizes client, not owner

Walking the Chain of Trust
(slide courtesy RIPE)

 (root) .

 Trusted Key . 8907

org.

nsrc.org.

Locally Configured

 nsrc.org. DNSKEY (…) rwx002… (4252) ; KSK
 DNSKEY (…) sovP42… (1111) ; ZSK

 RRSIG DNSKEY (…) 4252 nsrc.org. 5t...

 www.nsrc.org. A 202.12.29.5

 RRSIG A (…) 1111 nsrc.org. a3...

 org. DNSKEY (…) q3dEw… (7834) ; KSK
 DNSKEY (…) 5TQ3s… (5612) ; ZSK

 RRSIG DNSKEY (…) 7834 org. cMas…

 nsrc.org. DS 4252 3 1ab15…
 RRSIG DS (…) org. 5612

. DNSKEY (…) 5TQ3s… (8907) ; KSK
 DNSKEY (…) lasE5… (2983) ; ZSK

 RRSIG DNSKEY (…) 8907 . 69Hw9…

 org. DS 7834 3 1ab15…
 RRSIG DS (…) . 2983

DNSSEC Deployment
& Operations

Deploying DNSSEC
the boring bits

l  A Framework for DNSSEC Policies and DNSSEC Practice
Statements

l  http://www.rfc-editor.org/info/rfc6841
l  Details the design, implementation, methods and
practices governing the operation of a DNSSEC signed
zone

l  Helps external parties review/scrutinize the process and
evaluate the trustworthiness of the system.

l  Existing operational framework in which to insert the
DNSSEC process
⋅  much larger chance of shooting one self in foot if the
organisation doesn't have proper operational procedures
in the first place.

serve

What does it take to deploy
DNSSEC?

l Monitoring

DB export

www A 1.2.3.4
xyz A 2.3.4.5

www A 1.2.3.4
xyz A 2.3.4.5

completeness validate

SIG
N

 HSM

PUBLISH

www A 1.2.3.4
xyz A 2.3.4.5

a

a

a

a

www A 1.2.3.4

!

Deployment hurdles
and other issues

Lack of operational experience...

• Everyone talks about DNSSEC

– …but few people have real hands-on experience
with day-to-day operations

• One can't just turn DNSSEC on and off

– no longer signing the zone isn't enough

– parent needs to stop publishing DS record +
signatures

• Failure modes are fairly well known, but recovery
procedures cumbersome and need manual intervention

DS publication mechanisms
•  Standardized way to communicate DS to parent,

but not widely deployed, or different method used
–  SSL upload ?
–  PGP/GPG signed mail ?
–  EPP extension (RFC4310)

•  Remember, this should happen securely
•  Redelegation or change of registrant when the

zone is signed
–  Share the key during the transition ?
–  Turn off DNSSEC for the time ?
–  What if the original administrator is not cooperative ?
–  Policy issues

EDNS0 and broken firewalls,
DNS servers

• DNSSEC implies EDNS0

⋅  Larger DNS packets means > 512 bytes
⋅  EDNS0 not always recognized/allowed by firewall
⋅  TCP filtering, overzealous administrators...

l Many hotel and public network infrastructures (maybe
this one as well) do not allow DNSSEC records
through, or interfere with DNS resolution

l Captive portals, redirections

Application awareness
•  Applications don't know about DNSSEC, mostly

–  Users cannot see why things failed
–  Push support questions back to network staff

•  Compare with SSL failures (for users who can
read...)

•  There are APIs – currently 2
–  http://tools.ietf.org/id/draft-hayatnagarkar-dnsext-

validator-api-07.txt
–  http://www.unbound.net/documentation/index.html

•  Firefox plugin, Chrome support
•  What if applications explicitly set +CD ?

Securing the last link

l Stub resolvers remain open to man in the middle
attacks
– Not many ways around this
– Either trust your resolver, use TSIG or validate

yourself
l Work is being done to address these issues
– DNS over other transport protocols to work around

excessive filtering
– dnssec-trigger project (http://www.nlnetlabs.nl/

projects/dnssec-trigger/)

OPCODE=0

?

