Advanced DNS
Operations & Security

DNS Security - TSIG

Network Startup Resource Center
DNS: Data Flow

1. Zone file
2. Dynamic updates
3. slaves
4. Caching forwarder
5. resolver

Zone administrator
DNS Vulnerabilities

1. Impersonating master!
2. Unauthorized updates!
3. Zone administrator
4. Cache impersonation!
5. Cache pollution by! Data spoofing!

Server protection!

Data protection!
TSIG protected vulnerabilities

Zone administrator

Zone file

Dynamic updates

master

Impersonating master!

slaves

Unauthenticated updates!

Caching forwarder

resolver
What is TSIG?

- **Transaction SIGnature**
- A mechanism for protecting communication between name servers and between stub resolvers and nameservers

- A keyed-hash is applied (like a digital signature), so the recipient of the message can verify that it hasn’t been tampered with:
 - DNS question / answer
 - timestamp

- Based on a shared secret
 - Both the sender and recipient must be configured with it
What is TSIG?

- RFC 2845 – TSIG
- Can also be used to authorize:
 - zone transfers
 - dynamic updates
 - authentication of caching forwarders
- Used in server configuration – not in the zone file
TSIG example:

- Slave
 - KEY: %sgslf23fv!
 - SOA...
 - SOA...
 - Sig...
- Master
 - KEY: %sgslf23fv!
- Query: AXFR
- Response: Zone
- Verification

AXFR
Sig...
1. Generate secret
2. Communicate secret
3. Configure servers
4. Test
TSIG – Names & Secrets

• TSIG name
 - A name is given to the key. The name is what is transmitted in the message (so the receiver knows what key the sender has used, out of possibly many)

• TSIG secret value
 - A value determined during key generation
 - Usually seen encoded in BASE64
• dnssec-keygen

 - Simple tool to generate keys
 - Used here to generate TSIG keys

 dnssec-keygen -a <algorithm> -b <bits> -n host <key name>
TSIG – Generating a Secret

• Example

dnssec-keygen -a HMAC-MD5 -b 128 -n host ns1-ns2.grp2.net

• This will generate a key similar to this:

Kns1-ns2.grp2.net.+157+15921

• Files

 Kns1-ns2.grp2.net.+157+15921.key
 Kns1-ns2.grp2.net.+157+15921.private
TSIG – Generating a Secret

- TSIG keys are never put in the zone files
- There can be some confusion as keys can look like Resource Records:

 ns1-ns2.grp2.net. IN KEY 128 157 nEfRx9…bbPn7lyQtE=
TSIG – Configuring servers

• Configuring the key
 - in named.conf, same syntax as for the rndc statement:

• Using the key:
 - in named.conf, add:

 server x { key; };

 … where ‘x’ is the IP address of the REMOTE server.
Configuration example – named.conf

Primary server 10.10.0.1

```plaintext
key ns1-ns2.grp2.net {
    algorithm hmac-md5;
    secret "APlaceToBe";
};
server 10.10.0.2 {
    keys { ns1-ns2.grp2.net; }
};
zone "my.test.zone" {
    type master;
    file "db.myzone";
    allow-transfer {
        key ns1-ns2.grp2.net;
    }
};
```

Secondary server 10.10.0.2

```plaintext
key ns1-ns2.grp2.net {
    algorithm hmac-md5;
    secret "APlaceToBe";
};
server 10.10.0.1 {
    keys { ns1-ns2.grp2.net; }
};
zone "my.test.zone" {
    type slave;
    file "db.myzone.slave";
    masters { 10.10.0.1; }
};
```

```plaintext
```
TSIG – Testing with dig

- You can use `dig` to check TSIG configuration

  ```
  dig @<server> <zone> AXFR -k <TSIG keyfile>
  ```

 or

  ```
  dig @<server> <zone> AXFR -y "TSIG secret"
  ```

- Wrong key will return “Transfer failed”, and a message will be logged in the security category on the server being queried.
TSIG – Time!

- TSIG is time sensitive (to avoid replays)
 - message protection expires in 5 minutes
 - make sure time is synchronized! (NTP)
 - for testing, set the time
 - in operations, use NTP!
Questions