

Campus Networking Workshop

Introduction to OSPF

1101101011111000110101000111010

01011010110001101010001110100110

011101011010110001101010001110100

Modified from originals by Philip Smith

IPv4

- Internet Protocol version 4
 - Addresses are 32 bits long
 - An IPv4 address has a network portion and a host portion
 - "Subnet mask" used to mark the separation
 - Represents the number of network bits
 - The remaining bits are "host" bits
 - Written as
 - 12.34.56.78 255.255.255.0 or
 - 12.34.56.78/24

IPv6

- Internet Protocol version 6
 - Addresses are 128 bits long
 - An IPv6 address also has a network portion and a host portion
 - "Prefix Length" used to mark the separation
 - Represents the number of network bits
 - The remaining bits are "host" bits
 - Written as
 - 2001:db8::/32

What do routers do?

- An IP packet whose source address has different subnet bits than its destination address, has to be forwarded by a router
- A "route" is a pointer that says: "to reach this subnet, send the packet to this router"
 - 12.23.45.0/24 -> 11.22.33.44
- Routes can be "static" if they are configured manually, or dynamic if they are learned from other routers

Routing vs Forwarding

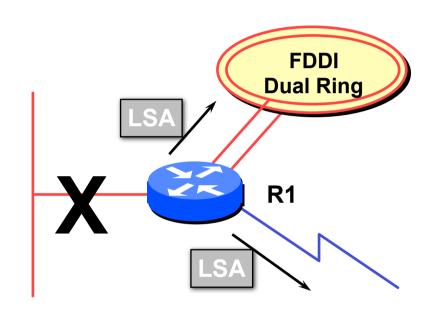
- Routing is not the same as Forwarding
- Routing is the building of maps
 - Each routing protocol usually has its own routing database
 - Routing protocols populate the forwarding table
- Forwarding is passing the packet to the next hop device
 - Forwarding table contains the best path to the next hop for each prefix
 - There is only ONE forwarding table

Routing Protocols

- Mechanisms that routers follow to exchange routes
 - Can be standard (RIP, OSPF, ISIS, BGP) or proprietary (EIGRP)
 - Categories: Interior (IGP), or exterior (EGP)
 - Categories: Link state or Distance Vector

OSPF Background

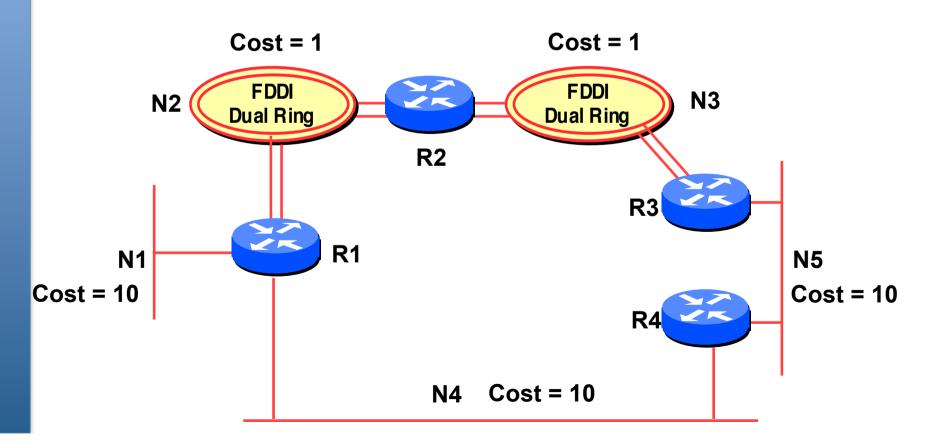
- Developed by IETF RFC1247
 - Designed for Internet TCP/IP environment
- OSPF v2 described in RFC2328/STD54
- Link state/Shortest Path First Technology
- Dynamic Routing
- Fast Convergence
- Route authentication


Link State Algorithm

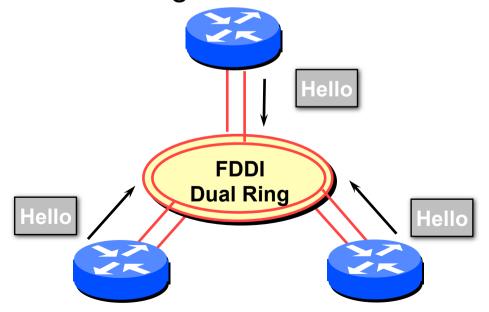
- Each router contains a database containing a map of the whole topology
 - Links
 - Their state (including cost)
- All routers have the same information
- All routers calculate the best path to every destination
- Any link state changes are flooded across the network
 - "Global spread of local knowledge"

Link State Routing

- Automatic neighbour discovery
 - Neighbours are physically connected routers
- Each router constructs a Link State Packet (LSP)
 - Distributes the LSP to neighbours...
 - ...using an LSA (Link State Advertisement)
- Each router computes its best path to every destination
- On network failure
 - New LSPs are flooded
 - All routers recompute shortest path tree


Low Bandwidth Requirements

- Only changes are propagated
- Multicast used on multi-access broadcast networks
 - 224.0.0.5 used for all OSPF speakers
 - 224.0.0.6 used for DR and BDR routers


"Shortest Path First"

The optimal path is determined by the sum of the interface costs: Cost = 10⁸/bandwidth

Hello Protocol

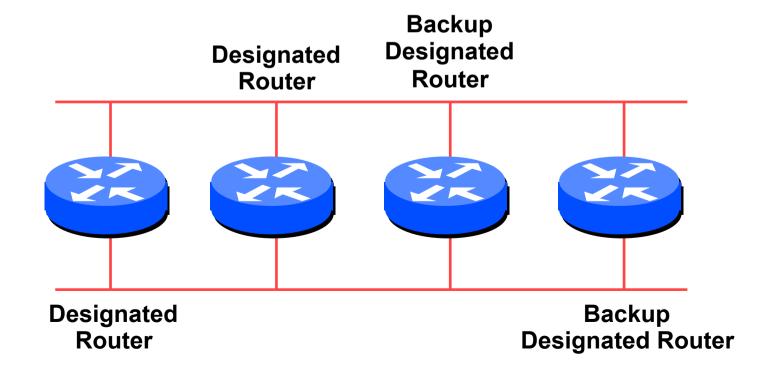
- Responsible for establishing and maintaining neighbour relationships
- Elects Designated Router on broadcast networks

- Hello Protocol
 - Hello Packets sent periodically on all OSPF enabled interfaces
 - Adjacencies formed between some neighbours
- Hello Packet
 - Contains information like Router Priority, Hello Interval, a list of known neighbours, Router Dead Interval, and the network mask

- Trade Information using LSAs
 - LSAs are added to the OSPF database
 - LSAs are passed on to OSPF neighbours
- Each router builds an identical link state database
- SPF algorithm run on the database
- Forwarding table built from the SPF tree

When change occurs:

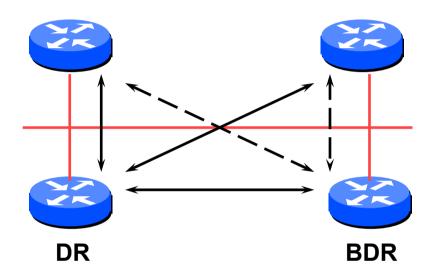
- Announce the change to all OSPF neighbours
- All routers run the SPF algorithm on the revised database
- Install any change in the forwarding table


Broadcast Networks

- These are network technologies such as Ethernet
- Introduces Designated and Backup Designated routers (DR and BDR)
 - Only DR and BDR form full adjacencies with other routers
 - The remaining routers remain in a "2-way" state with each other
 - If they were adjacent, we'd have n-squared scaling problem
 - If DR or BDR "disappear", re-election of missing router takes place

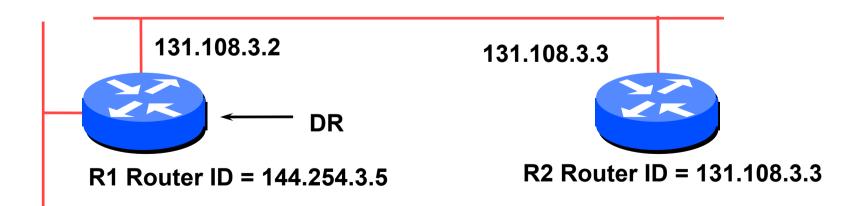
Designated Router

One per multi-access network


- Generates network link advertisements for the multiaccess network
- Speeds database synchronisation

Designated Router

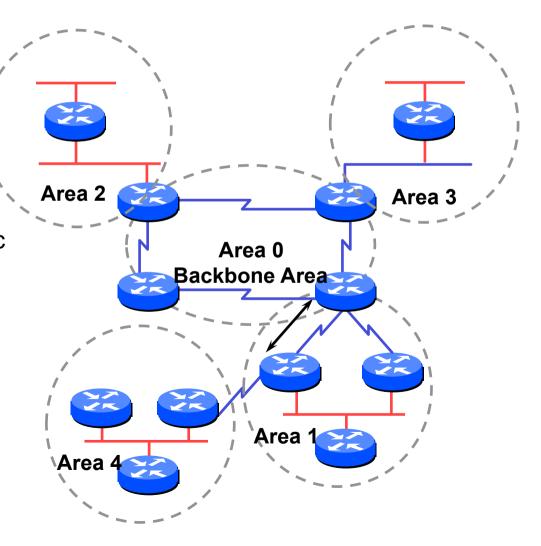
- All routers are adjacent to the DR
 - All routers are adjacent to the BDR also
- All routers exchange routing information with DR
 - BDR also stays synchronized with the DR
- DR updates the database of all its neighbours
 - · BDR waits silently and only takes over if DR dies
- This scales!
 - 2n problem rather than having an n-squared problem.


Designated Router

- Adjacencies only formed with DR and BDR
- LSAs propagate along the adjacencies

Designated Router Priority

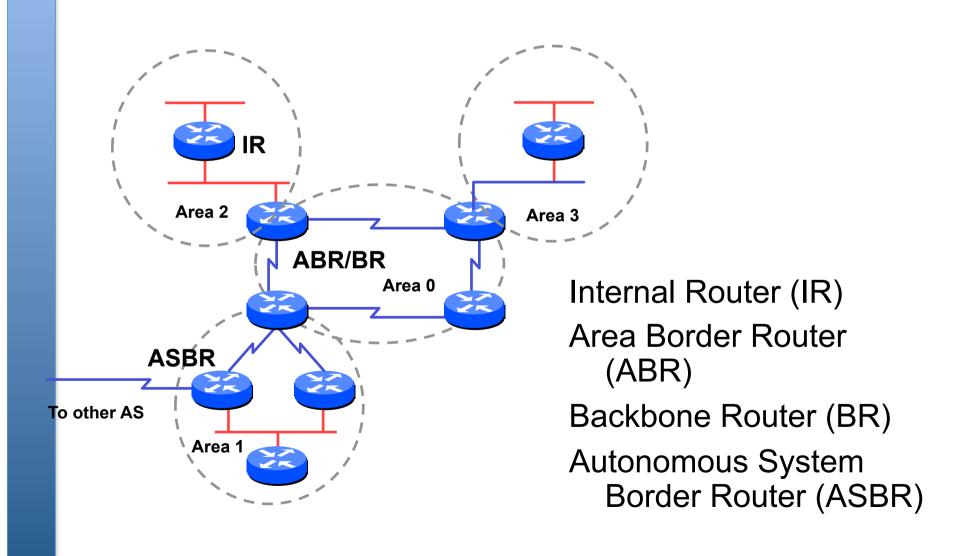
- Determined by interface priority
- Otherwise by highest router ID
 - (For Cisco IOS, this is address of loopback interface, otherwise highest IP address on router)

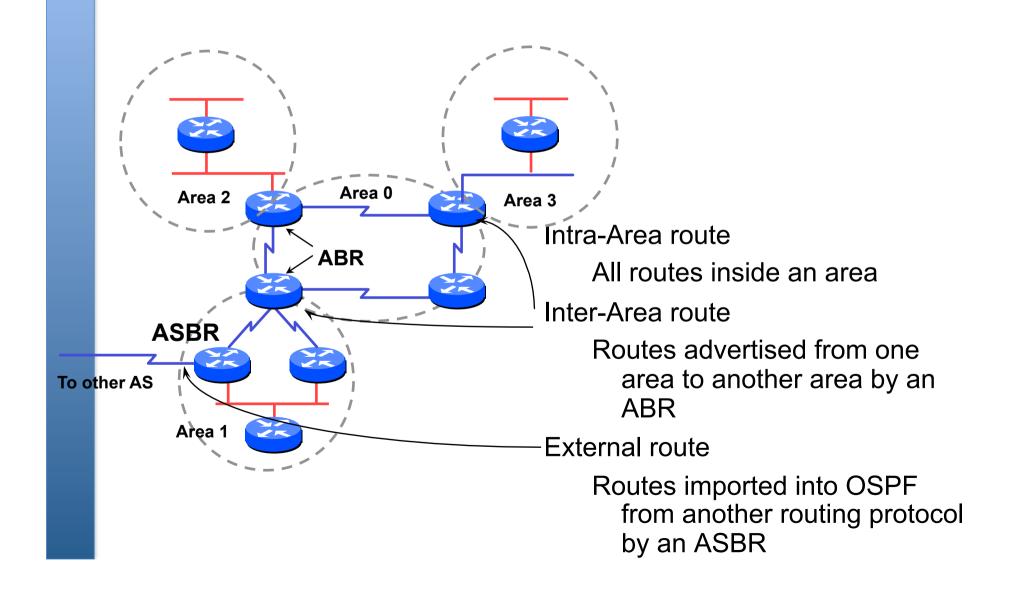

144.254.3.5

More Advanced OSPF

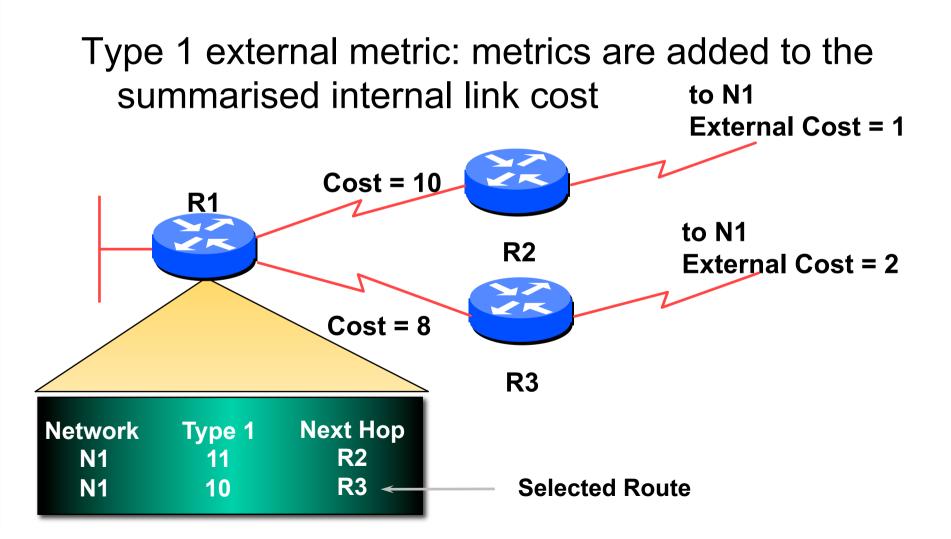
- OSPF Areas
- Virtual Links
- Router Classification
- OSPF route types
- External Routes
- Route authentication
- Equal cost multipath

OSPF Areas


- Group of contiguous hosts and networks
- Per area topological database
 - · Invisible outside the area
 - Reduction in routing traffic
- Backbone area contiguous
 - All other areas must be connected to the backbone
- Virtual Links


OSPF Areas

- Reduces routing traffic in area 0
- Consider subdividing network into areas
 - Once area 0 is more than 10 to 15 routers
 - Once area 0 topology starts getting complex
- Area design often mimics typical ISP core network design
- Virtual links are used for "awkward" connectivity topologies


Classification of Routers

OSPF Route Types

External Routes

External Routes

Type 2 external metric: metrics are compared without adding to the internal link cost to N1 External Cost = 1 **Cost = 10 R1** to N1 **R2** External Cost = 2 Cost = 8**R3 Next Hop Network** Type 2 **R2** ← **Selected Route N1** R3 **N1**

Route Authentication

It is recommended to use route authentication for OSPF

...and all other routing protocols

Susceptible to denial of service attacks

OSPF runs on TCP/IP

Automatic neighbour discovery

Equal Cost Multipath

If *n* paths to same destination have equal cost, OSPF will install *n* entries in the forwarding table

Loadsharing over the *n* paths

Useful for expanding links across an ISP backbone

Don't need to use hardware muliplexors

Don't need to use static routing

OSPFv3

- OSPFv2 only supports IPv4
- OSPFv3 developed for IPv6 only
 - Dual stack networks need to run both protocols
 - They run independently of each other

OSPFv2 vs. OSPFv3

- Very similar, with a few differences
 - New LSA types to separate links from their prefixes
 - Avoids SPF recalculations when only the link prefix changes
 - Removes OSPF-specific authentication
 - Relies on underlying IPv6 security headers
 - Supports multiple instances

OSPF Configuration – Start

- Start the OSPF process
 router ospf 100
- "100" is the process ID
 - Process ID is unique to the router
 - You can run multiple OSPF processes on the same router
 - It is common to set the process ID to autonomous system (AS) number

OSPF Configuration Advertising Networks Option 1

router OSPF 100 redistribute connected subnets

- Includes all the subnets connected to the router, but announces them as external type-2 LSAs, which are not summarized
 - Not a good option when using multiple areas
- It also does not give you control over which networks you want to announce

OSPF Configuration Advertising Networks Option 2

- Per-link configuration (IOS 12.4 and later)
 - OSPF configured on each interface
 - Passive interfaces do not establish adjacencies

```
router ospf 100
  passive-interface default
  no passive interface GigabitEthernet0
interface GigabitEthernet0
  ip address 10.10.0.1 255.255.255.0
  ip ospf 100 area 0
interface FastEthernet0
  ip address 192.168.10.1 255.255.255.0
  ip ospf 100 area 0
```

OSPF Configuration Advertising Networks Option 3

- Network statements
 - Annouce subnets included in given network blocks
 - Add one network statement per subnet, or use wildcard masks to include multiple subnets

```
ospf router 100
  passive-interface default
  no passive-interface GigabitEthernet0
  network 10.10.0.0 0.0.0.255 area 0
  network 192.168.0.0 0.0.0.3 area 0
```

OSPF Configuration Authenticating adjacencies

- Very important to control which devices can establish adjacencies
 - A malicious user could inject routes and steal your traffic!

```
router ospf 100
  area 0 authentication message-digest
interface GigabitEthernet0/0
  ip ospf authentication-key <key>
```

Questions?