

Virtual Machine Migration

Brian Candler
Network Startup Resource Center

brian@nsrc.org

Migration

Host 1

Guest

Host 2

● Moving a VM from one host to another

Applications

● Load balancing
– Move VMs to a less busy host
– Make use of newly-added capacity

● Maintenance
– Move VMs off a host before it is shut down

● Recovery from host failure
– Restart VM on a different host

Types of migration

● Cold migration
– Shutdown VM on host 1, restart on host 2

● Warm migration
– Suspend VM on host 1, copy across RAM and CPU

registers, continue on host 2 (some seconds later)
● Live migration

– Copy across RAM while VM continues to run
– Mark "dirty" (changed) RAM pages & re-copy
– Brief suspension for final copy (<< 1 sec)

Migration and libvirt

● It does work, but not the ideal tool
● libvirt manages individual hosts, so it doesn't

have a cluster-wide view
– by default won't prevent the same VM starting up in

two places at once (very bad!)
● "sanlock" plugin available

– can end up with multiple copies of the XML
definition file on different hosts

Migration and Storage
● The VM disk image has to be accessible from

the new host after the migration
● Just copy the image across?

– Slow
– Fine for a cold migration though

● Can we do a "live migration" of storage?
– Yes (e.g. very recent versions of kvm can do this)
– Risky
– Doesn't help recover from node failure

Traditional solution: shared storage

Host Host Host

Storage

VM images

Guest Guest Guest Guest Guest Guest

Advantages of shared storage

● Complete mobility of VMs with live migration
● Can scale the compute nodes and the storage

nodes independently
● Simpler compute nodes

– little or no local storage required
● Central point of volume management
● Central point of backup / DR

Disadvantages of shared storage

● Storage becomes single point of failure
● Network becomes single point of failure
● Network bandwidth can be a bottleneck
● Network latency can impact performance
● Network security

– keep storage on a completely separate network
● Risk of accidentally starting two VMs using the

same disk image!

Avoiding storage server SPOF

● This is very hard to build correctly
● Vendors will sell this to you for $$$

Dual-attached
disk shelf

Active
Headend

Standby
Headend

Heart
beat

Clustered storage server

Avoiding network SPOF

Or you can buy a really expensive chassis switch with multiple power supplies, line
cards, switching fabrics and management cards

Dual switches

Host Host Host

Storage

Network bandwidth

10Gig

Note: 1Gbps ≈ 100MB/sec ≈ throughput of a single hard drive

1Gig or 10Gig

Host Host Host

Storage

Latency

● Time between sending a request and receiving
the reply

● Some applications are very latency sensitive
– e.g. a database which writes to disk and waits for

confirmation that data has been written
● Networking adds to the latency

– 10G on CAT6/RJ45 has higher latency than fibre or
SFP+ direct-attach cables

– alternatives to ethernet: fibre channel, infiniband

Questions?

Shared storage protocols

● Fundamentally two types:
● Shared filesystem

– a.k.a. "Network Attached Storage" or "NAS"
● Shared block device

– a.k.a. "Storage Area Network" or "SAN"

Shared filesystem
● Client has remote access to server's filesystem

– requests like "read directory", "open file named X"
● Examples:

– NFS
– CIFS (Windows/Samba shares)

● VM images are just files on the server
– very easy to set up and understand
– directory of image files, just happens to be remote
– disk image files may support snapshots

Using shared filesystem

mount s1:/var/lib/libvirt/images /mnt
ls /mnt
debian1.img
debian2.img
debian3.img
debian4.img
...

Limitations of shared filesystem

● Overhead of traversing the kernel filesystem at
both client side and server side

● Usual issues with disk images at the server
side (e.g. fragmentation)

Shared block device
● Remote requests to read/write block N

– this is closer to what the VM expects
● Server side can map these requests to a

physical drive, a logical volume or an image file
● Examples:

– iSCSI (standard, heavyweight)
– nbd (Linux only)
– ggated (FreeBSD only)
– Fibre Channel ($$$)

nbd: server side
/etc/nbd-server/config
[generic]
 user = nbd
 group = nbd
 includedir = /etc/nbd-server/conf.d
 listenaddr = 10.10.0.241
 oldstyle = true

Repeat for each volume to export
[disk1]
 exportname = /data/nbd/disk1.img
 port = 20001
 flush = true
 fua = true

"Old style" nbd protocol uses a different TCP port per volume. New servers use
named volumes all accessible on the same port (10809)

nbd: client side
nbd-client s1.ws.nsrc.org 20001 /dev/nbd0
blockdev --getsize64 /dev/nbd0
2147483648

...

nbd-client -d /dev/nbd0

● You can use /dev/nbd0 just as you would a
local block device (mkfs, mount etc)

nbd: direct access from KVM

● KVM knows how to speak the nbd protocol - so
it can bypass the kernel's nbd client

 <disk type='network' device='disk'>
 <driver name='qemu' type='raw'/>
 <source protocol='nbd'>
 <host name='s1.ws.nsrc.org' port='20001'/>
 </source>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0'... />
 </disk>

nbd limitations
● Changing the config file requires a server

restart, which can impact on active clients
– Clients may see I/O errors

● kvm's built-in nbd client fails to reconnect?
● apt-get install -t wheezy-backports qemu-kvm

● Still doesn't seem to work right
– Pre-create logical volumes and export them before

you need them?
● No security, apart from optional "IP allow"

– Keep all nbd traffic on a separate network!

nbd tricks

● Alternative nbd server implementations
– xnbd-server

● nbd proxy for migrating disk images
– flexnbd-c

● separate IPv6 address per volume, migration support
● Test them before deployment!

Alternatives to shared storage

Replicated Storage

● DRBD - as used by Ganeti
– Primary accesses local disk, writes are replicated

0 3
1 4
2 5

VM
read,
write

write 0 3
1 4
2 5

Replicated Storage

● Reverse roles for migration

VM
read,
write

write 0 3
1 4
2 5

0 3
1 4
2 5

Distributed Storage

0 4
3

VM

1 5
0

2 1
4

3 2
5

Distributed Storage

● Examples:
– Ceph (rados/rbd) - general purpose
– Sheepdog - for KVM images only
– Glusterfs

● Data is stored on multiple nodes
– Offers huge scale and resilience against loss of one

or more nodes
– Complexity, balancing, "split brain" problems
– Still limited by network bandwidth/latency

Summary
● Migration of virtual machines allows load

balancing and cluster maintenance
● Live migration makes this invisible to VM users

– can achieve very high uptime
● Access to storage is the key
● Various options for shared, replicated or

distributed storage
● Can be difficult and expensive to build

