
DNS Security - TSIG

Advanced DNS
Operations & Security

DNS: Data Flow

DNS Vulnerabilities

TSIG protected vulnerabilities

What is TSIG ?

•  Transaction SIGnature
•  A mechanism for protecting communication between name

servers and between stub resolvers and nameservers

•  A keyed-hash is applied (like a digital signature), so the
recipient of the message can verify that it hasn’t been
tampered with:
 - DNS question / answer
 - timestamp

•  Based on a shared secret

 - Both the sender and recipient must be configured with it

•

A
C
L
s

•  In some contexts, names of keys (more on this later)

What is TSIG ?

•  RFC 2845 – TSIG
•  Can also be used to authorize:

 - zone transfers
 - dynamic updates
 - authentication of caching forwarders

•  Used in server configuration – not in the zone file

•

A
C
L
s

TSIG example:

TSIG steps

1.  Generate secret

2.  Communicate secret

3.  Configure servers

4.  Test

TSIG – Names & Secrets

•  TSIG name

 - A name is given to the key. The name is what is
 transmitted in the message (so the receiver knows
 what key the sender has used, out of possibly many)

•  TSIG secret value

 - A value determined during key generation
 - Usually seen encoded in BASE64

TSIG – Generating a Secret

•  dnssec-keygen

 - Simple tool to generate keys
 - Used here to generate TSIG keys

dnssec-keygen -a <algorithm> -b <bits> -n host <key name>

TSIG – Generating a Secret

•  Example

dnssec-keygen -a HMAC-MD5 –b 128 -n host ns1-ns2.grp2.net

•  This will generate a key similar to this:

Kns1-ns2.grp2.net.+157+15921

•  Files

 Kns1-ns2.grp2.net.+157+15921.key
 Kns1-ns2.grp2.net.+157+15921.private

TSIG – Generating a Secret

•  TSIG keys are never put in the zone files
•  There can be some confusion as keys can look like

Resource Records:

 ns1-ns2.grp2.net. IN KEY 128 157 nEfRx9…bbPn7lyQtE=

TSIG – Configuring servers

•  Configuring the key
 - in named.conf, same syntax as for the rndc statement:

•  Using the key:

 - in named.conf, add:

 server x { key ….; };

… where ‘x’ is the IP address of the REMOTE server.

Configuration example –
named.conf

key ns1-ns2.grp2.net {
 algorithm hmac-md5;

 secret “APlaceToBe”;
};

server 10.10.0.2 {
 keys { ns1-ns2.grp2.net; };

};

zone “my.test.zone” {
 type master;

 file “db.myzone”;

 allow-transfer {
 key ns1-ns2.grp2.net;

 };
};

Primary server 10.10.0.1
key ns1-ns2.grp2.net {
 algorithm hmac-md5;

 secret “APlaceToBe”;
};

server 10.10.0.1 {
 keys { ns1-ns2.grp2.net; };

};

zone “my.test.zone” {
 type slave;

 file “db.myzone.slave”;

 masters { 10.10.0.1; };
 };

};

Secondary server 10.10.0.2

TSIG – Testing with dig

•  You can use dig to check TSIG configuration

 dig @<server> <zone> AXFR –k <TSIG keyfile>

or

 dig @<server> <zone> AXFR –y “TSIG secret”

•  Wrong key will return “Transfer failed”, and a message will

be logged in the security category on the server being
queried

TSIG – Time!

•  TSIG is time sensitive (to avoid replays)
 - message protection expires in 5 minutes
 - make sure time is synchronized! (NTP)
 - for testing, set the time
 - in operations, use NTP!

Questions

?

