
Introduction to Cryptography

Steven M. Bellovin January 16, 2014 1



Cryptography Introduction: Important
Concepts

• Symmetric ciphers

• Public key encryption

• Digital signatures

• Cryptographic hash functions

• Message Authentication Codes (MACs)

• Certificates

• Random numbers

• Key handling

Steven M. Bellovin January 16, 2014 2



What is a Cryptosystem?

A cryptosystem is pair of algorithms that take a key and under control of
that key converts plaintext to ciphertext and back.

Plaintext is what you want to protect; ciphertext should appear to be
random gibberish.

The design and analysis of today’s cryptographic algorithms is highly
mathematical. Do not try to design your own algorithms.

Steven M. Bellovin January 16, 2014 3



Properties of a Good Cryptosystem

• There should be no way short of enumerating all possible keys to find
the key from any amount of ciphertext and plaintext, nor any way to
produce plaintext from ciphertext without the key.

• Enumerating all possible keys must be infeasible.

• The ciphertext must be indistinguishable from true random values.

Steven M. Bellovin January 16, 2014 4



Kerckhoffs’ Law (1883)

There must be no need to keep the system secret, and it must be
able to fall into enemy hands without inconvenience.

In other words, the security of the system must rest entirely on the
secrecy of the key.

Steven M. Bellovin January 16, 2014 5



Keys

• Must be strongly protected

• Ideally, should be a random set of bits of the appropriate length

• Ideally, each key should be used for a limited time only

• Ensuring that these properties hold is a major goal of cryptographic
research and engineering

Steven M. Bellovin January 16, 2014 6



Cipher Strengths

• A cipher is no stronger than its key length: if there are too few keys,
an attacker can enumerate all possible keys

• The old DES cipher has 56 bit keys—arguably too few in 1976; far too
few today. (Deep Crack was built in 1996 by the EFF.)

• Strength of cipher depends on how long it needs to resist attack.

• No good reason to use less than 128-bit keys

• NSA rates 128-bit AES as good enough for SECRET traffic; 256-bit
AES is good enough for TOP-SECRET traffic.

• But a cipher can be considerably weaker! (A monoalphabetic cipher
(one that always maps a single character to a fixed ciphertext
character) over all possible byte values has 256! keys—a length of
1684 bits—but is trivially solvable.)

Steven M. Bellovin January 16, 2014 7



Brute-Force Attacks

• Build massively parallel machine

• Can be distributed across the Internet

• Give each processor a set of keys and a plaintext/ciphertext pair

• If no known plaintext, look for probable plaintext (i.e., length fields,
high-order bits of ASCII text, etc.)

• On probable hit, check another block and/or do more expensive tests

Steven M. Bellovin January 16, 2014 8



CPU Speed versus Key Size

• Adding one bit to the key doubles the work factor for brute force
attacks

• The effect on encryption time is often negligible or even free

• It costs nothing to use a longer RC4 key

• Going from 128-bit AES to 256-bit AES takes (at most) 40% longer in
CPU time, but increases the attacker’s effort by a factor of 2128

• Using triple DES costs 3× more than DES to encrypt, but increases
the attacker’s effort by a factor of 2112

• Moore’s Law favors the defender

Steven M. Bellovin January 16, 2014 9



Block Ciphers

• Operate on a fixed-length set of bits

• Output blocksize generally the same as input blocksize

• Well-known examples: DES (56-bit keys; 64-bit blocksize); AES
(128-, 192-, and 256-bit keys; 128-bit blocksize)

Steven M. Bellovin January 16, 2014 10



Stream Ciphers

• Key stream generator produces a sequence S of pseudo-random
bytes; key stream bytes are combined (generally via XOR) with
plaintext bytes: Pi ⊕ Si → Ci

• Stream ciphers are very good for asynchronous traffic

• Best-known stream cipher is RC4; commonly used with SSL. (RC4 is
now considered insecure.)

• Key stream S must never be reused for different plaintexts:

C = A⊕K

C′ = B ⊕K

C ⊕ C′ = A⊕K ⊕B ⊕K

= A⊕B

• Guess at A and see if B makes sense; repeat for subsequent bytes
Steven M. Bellovin January 16, 2014 11



Basic Structure of (Most) Block Ciphers

• Optional key scheduling—convert supplied key to internal form

• Multiple rounds of combining the plaintext with the key.

• DES has 16 rounds; AES has 9-13 rounds, depending on key length

Steven M. Bellovin January 16, 2014 12



Modes of Operation

• Direct use of a block cipher is almost always wrong

• Enemy can build up “code book” of plaintext/ciphertext equivalents

• Beyond that, direct use only works on messages that are a multiple of
the cipher block size in length

• Solution: several standard Modes of Operation, including Electronic
Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), Output Feedback (OFB), and Counter (CTR). (Some newr
modes provide authentication as well as confidentiality.)

• All modes of operation except ECB require an extra block known as
the Initialization Vector (IV). IVs must be unpredictable by the enemy.

Steven M. Bellovin January 16, 2014 13



Example: Cipher Block Chaining
P1

Encrypt

C1

P2

Encrypt

C2

P3

Encrypt

C3

IV

{Pi ⊕ Ci−1}k → Ci

{Ci}k−1 ⊕ Ci−1 → Pi

Steven M. Bellovin January 16, 2014 14



Things to Notice About CBC

• Identical plaintext blocks do not, in general, produce the same
ciphertext. (Why?)

• Each ciphertext block is a function of all previous plaintext blocks.
(Why?)

• The converse is not true, but we won’t go into that in this class

Steven M. Bellovin January 16, 2014 15



Alice and Bob

• Alice wants to communicate security with Bob

• (Cryptographers frequently speak of Alice and Bob instead of A and
B. . . )

• What key should she use?

Steven M. Bellovin January 16, 2014 16



Pre-Arranged Key Lists?

• A fixed key? Encrypting too much data with a single key is dangerous

• What if you run out of keys?

• What if a key is stolen?

“Why is it necessary to destroy yesterday’s [key] . . . list if it’s
never going to be used again?”

“A used key, Your Honor, is the most critical key there is. If
anyone can gain access to that, they can read your
communications.”

(trial of Jerry Whitworth, a convicted spy.)

• What if Alice doesn’t know in advance that she’ll want to talk to Bob?

Steven M. Bellovin January 16, 2014 17



The Solution: Public Key Cryptography

• Allows parties to communicate without prearrangement

• Separate keys (K and K−1) for encryption and decryption

• Not possible to derive decryption key from encryption key

• Permissible to publish encryption key, so that anyone can send you
secret messages

• All known public key systems are very expensive to use, in CPU time
and bandwidth.

• Most public systems are based on mathematical problems.

Steven M. Bellovin January 16, 2014 18



Different Keys

Private key Known only to the owner

Public key Known to the world

Relationship Given the private key, it’s easy to calculate the public key.
Given just the public key, it is infeasible to calculate the private key

Steven M. Bellovin January 16, 2014 19



Key Generation

2 

Stolen from http://gdp.globus.org/gt4-tutorial/multiplehtml/ch09s03.html

Steven M. Bellovin January 16, 2014 20



Mathematical Background

• A prime number is one divisible only by 1 and itself

• x mod y (pronounced “x modulo y”) is the remainder when x is
divided by y

+ 2 ≡ 23 mod 7: “2 is equivalent to the remainder of 23 divided by 7”

• Most public key systems rely on modular arithmetic and very large
prime numbers

Steven M. Bellovin January 16, 2014 21



RSA

• The best-known public key system is RSA (Rivest, Shamir, Adleman)

• Generate two large (at least 1024-bit) primes p and q; let n = pq

• Pick two integers e and d such that ed ≡ 1 mod (p− 1)(q − 1).
Often, e = 65537, since that simplifies encryption calculations.
(Older systems use e = 3, but that’s no longer recommended.)

• The public key is 〈e, n〉; the private key is the pair 〈d, n〉.

• To encrypt m, calculate c = me mod n; to decrypt c, calculate
m = cd mod n.

• The security of the system (probably) relies on the difficulty of
factoring n.

• Finding such large primes is relatively easy; factoring n is believed to
be extremely hard.

Steven M. Bellovin January 16, 2014 22



Classical Public Key Usage

• Alice publishes her public key in the phone book.

• Bob prepares a message and encrypts it with that key by doing a
large exponentiation.

• Alice uses her private key to do a different large exponentiation.

• It’s not that simple—more in a few minutes. . .

Steven M. Bellovin January 16, 2014 23



Public Key Encryption

3 

Steven M. Bellovin January 16, 2014 24



Complexities

• RSA calculations are very expensive; neither Bob nor Alice can afford
to do many.

• RSA is too amenable to mathematical attacks; encrypting the wrong
numbers is a bad idea.

• Example: “yes”3 is only 69 bits, and won’t be reduced by the modulus
operation; finding 3√503565527901556194283 is easy.

• We need a better solution

Steven M. Bellovin January 16, 2014 25



A (More) Realistic Scenario

• Bob generates a random key k for a conventional cipher.

• Bob encrypts the message: c = {m}k.

• Bob pads k with a known amount of padding, to make it at least 512
bits long; call this k′.

• k′ is encrypted with Alice’s public key 〈e, n〉.

• Bob transmits {c, (k′)e mod n} to Alice.

• Alice uses 〈d, n〉 to recover k′, removes the padding, and uses k to
decrypt ciphertext c.

• In reality, it’s even more complex than that. . .

Steven M. Bellovin January 16, 2014 26



Who Sent a Message?

• When Bob receives a message from Alice, how does he know who
sent it?

• With traditional, symmetric ciphers, he may know that Alice has the
only other copy of the key; with public key, he doesn’t even know that

• Even if he knows, can he prove to a third party—say, a judge—that
Alice sent a particular message?

Steven M. Bellovin January 16, 2014 27



Digital Signatures

• RSA can be used backwards: you can encrypt with the private key,
and decrypt with the public key.

• This is a digital signature: only Alice can sign her messages, but
anyone can verify that the message came from Alice, by using her
public key

• It’s too expensive to sign the whole message. Instead, Alice
calculates a cryptographic hash of the message and signs the hash
value.

• If you sign the plaintext and encrypt the signature, the signer’s identity
is concealed; if you sign the ciphertext, a gateway can verify the
signature without having to decrypt the message.

Steven M. Bellovin January 16, 2014 28



They’re Not Like Real Signatures

• Real signatures are strongly bound to the person, and weakly bound
to the data

• Digital signatures are strongly bound to the data, and weakly bound
to the person—what if the key is stolen (or deliberately leaked)?

• A better term: digital signature algorithms provide non-repudiation

Steven M. Bellovin January 16, 2014 29



Cryptographic Hash Functions

• Produce relatively-short, fixed-length output string from arbitrarily
long input.

• Computationally infeasible to find two different input strings that hash
to the same value (“collision”)

• Computationally infeasible to find any input string that hashes to a
given value (“pre-image”)

• Computationally infeasible to find any input string that hashes to the
same value as the hash of a given input (“second preimage”)

• Strength roughly equal to half the output length

• This means that you want a hash function whose output is at least
160 bits and probably at least 256 bits

Steven M. Bellovin January 16, 2014 30



Common Hash Functions

• Best-known cryptographic hash functions: MD5 (128 bits), SHA-1
(160 bits), SHA2-256/384/512 (256/384/512 bits)

• Wang et al. have found collision attacks against MD5 and SHA-1

+ Never use MD5; SHA-1 is being phased out (Microsoft will stop
accepting it in about 2.5 years)

• SHA2-256/384/512 have the same basic structure as MD5 and
SHA-1—but NIST now believes they’re secure

• NIST held a design competition for a new SHA-3 hash function; the
winner (Keccak) has a completely different structure

Steven M. Bellovin January 16, 2014 31



Sending a Signed Message

• Optionally encrypt the message with a new random key k

• Encrypt k with the recipient’s public key

• Hash the encrypted message

• Digitally sign the hash using the sender’s private key

• The full message from Alice to Bob:

{m}k , {k}KB
, { H({m}k, {k}KB

) }KA
−1

Steven M. Bellovin January 16, 2014 32



A Signed Message from Alice to Bob

 
 

k 
Message 

 
 
Encrypted to Bob 

k 

 
 
Signed by Alice 

hash 

Steven M. Bellovin January 16, 2014 33



In Detail. . .

{m}k , {k}KB
, {H({m}k, {k}KB

) }KA
−1

{m}k Message m encrypted with random key k

{k}KB
k encrypted with Bob’s public key, with all the
usual padding

H({m}k, {k}KB
) The hash of the previous two parts

{ H({m}k, {k}KB
) }KA

−1 The hash digitally signed by Alice’s private
key

Steven M. Bellovin January 16, 2014 34



Receiving a Signed Message

• Hash the received message

• Use the sender’s public key to verify that the signature is correct

• Use the recipient’s private key to recover k

• Use k to decrypt the message

Steven M. Bellovin January 16, 2014 35



A Digitally Signed Message

4 
Steven M. Bellovin January 16, 2014 36



The Birthday Paradox

• How many people need to be in a room for the probability that two will
have the same birthday to be > .5?

• Naive answer: 183

• Correct answer: 23

• The question is not “who has the same birthday as Alice?”; it’s “who
has the same birthday as Alice or Bob or Carol or . . . ” assuming that
none of them have the same birthday as any of the others

Steven M. Bellovin January 16, 2014 37



The Birthday Attack

• Alice can prepare lots of variant contracts, looking for any two that
have the same hash

• More precisely, she generates many trivial variants on m and m′,
looking for a match between the two sets

• This is much easier than finding a contract that has the same hash as
a given other contract

• As a consequence, the strength of a hash function against brute force
attacks is approximately half the output block size: 64 bits for MD5,
80 bits for SHA-1, etc.

Steven M. Bellovin January 16, 2014 38



Message Integrity

• We need a way to prevent tampering with messages

• We can use a key and a cryptographic hash to generate a Message
Authentication Code (MAC).

• Simpler solutions don’t work

• One bad idea: append a cryptographic hash to some plaintext, and
encrypt the whole thing with, say, CBC mode

{P,H(P )}K

• This can fall victim to a chosen plaintext attack

Steven M. Bellovin January 16, 2014 39



HMAC

• Build a MAC from a cryptographic hash function

• Best-known construct is HMAC—provably secure under minimal
assumptions

• HMAC(m, k) = H(opad⊕ k,H(ipad⊕ k,m)) where H is a
cryptographic hash function

• Note: authentication key must be distinct from the confidentiality key

• Frequently, the output of HMAC is truncated

Steven M. Bellovin January 16, 2014 40



Cryptography and Authentication

• Some way to use a cryptographic key to prove who you are

• Can go beyond simple schemes given above

• Can use symmetric or public key schemes

• Most public key schemes use certificates

Steven M. Bellovin January 16, 2014 41



What are Certificates

• How does Alice get Bob’s public key?

• What if the enemy tampers with the phone book? Sends the phone
company a false change-of-key notice? Interferes with Alice’s query
to the phone book server?

• Answer: use certificates

• A certificate is a digitally-signed message containing an identity and a
public key—prevents tampering.

Steven M. Bellovin January 16, 2014 42



Why Trust a Certificate?

• Who signed it? Why do you trust them?

• Certificates are generally signed by a Certificate Authority (CA)

• How do you know the public key of the CA? You need that to verify
the signature

• Some public key (known as the trust anchor ) must be provided
out-of-band—trust has to start somewhere.

Steven M. Bellovin January 16, 2014 43



Certificate Authorities

• Who picks CAs? No one and every one.

• Your browser has some CAs built-in—because the CA paid the
browser vendor enough money. Is that grounds for trust?

• Matt Blaze: “A commercial certificate authority can be trusted to
protect you from anyone from whom they won’t take money.”

Steven M. Bellovin January 16, 2014 44



Things to Notice About Certificates

• Signer

• Validity dates

• Algorithms (RSA, SHA1)

• Key sizes

• Certificate usage—encryption and authentication, but not for issuing
other certificates

• Certificate Revocation List (CRL)

• OCSP server: Online Certificate Status Protocol

• Logos

Steven M. Bellovin January 16, 2014 45



Examining Certificates
$ openssl s_client -connect www.google.com:443
CONNECTED(00000003)
depth=2 /C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
verify error:num=20:unable to get local issuer certificate
verify return:0
---
Certificate chain
0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
i:/C=US/O=Google Inc/CN=Google Internet Authority G2

1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2
i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority

---
Server certificate
-----BEGIN CERTIFICATE-----
MIIEdjCCA16gAwIBAgIICRt+KuhvpPowDQYJKoZIhvcNAQEFBQAwSTELMAkGA1UE
...

Steven M. Bellovin January 16, 2014 46



Examining Certificates (more)
$ openssl x509 -text </tmp/cert.txt
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

09:1b:7e:2a:e8:6f:a4:fa
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=US, O=Google Inc, CN=Google Internet Authority G2
Validity

Not Before: Dec 11 12:02:58 2013 GMT
Not After : Apr 10 00:00:00 2014 GMT

Subject: C=US, ST=California, L=Mountain View, O=Google Inc, CN=www.google.com
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:c1:bf:4a:95:07:e1:56:72:2e:45:68:7a:8f:3d:
...

Exponent: 65537 (0x10001)

Steven M. Bellovin January 16, 2014 47



Examining Certificates (even more)
X509v3 extensions:

X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication

X509v3 Subject Alternative Name:
DNS:www.google.com

Authority Information Access:
CA Issuers - URI:http://pki.google.com/GIAG2.crt
OCSP - URI:http://clients1.google.com/ocsp

X509v3 Subject Key Identifier:
83:16:B1:57:49:89:F0:B6:18:4F:8B:B0:8F:06:3F:E2:E8:43:A0:60

X509v3 Basic Constraints: critical
CA:FALSE

X509v3 Authority Key Identifier:
keyid:4A:DD:06:16:1B:BC:F6:68:B5:76:F5:81:B6:BB:62:1A:BA:5A:81:2F

X509v3 Certificate Policies:
Policy: 1.3.6.1.4.1.11129.2.5.1

X509v3 CRL Distribution Points:
URI:http://pki.google.com/GIAG2.crl

Signature Algorithm: sha1WithRSAEncryption
(actual signature)

Steven M. Bellovin January 16, 2014 48



Who Issues Certificates?

• Identity-based: some organization, such as Verisign, vouches for your
identity
+Cert issuer is not affiliated with verifier

• Authorization-based: accepting site issues its own certificates
+Cert issuer acts on behalf of verifier

• Identity-based certificates are better when user has no prior
relationship to verifier, such as secure Web sites

• Authorization-based certs are better when verifier wishes to control
access to its own resources—no need to trust external party

Steven M. Bellovin January 16, 2014 49



Why Revoke Certificates?

• Private key compromised

• Cancel authorization associated with certificate

• Note the difference between identity and authorization certificates
here

• CA key compromised, e.g., DigiNotar

Steven M. Bellovin January 16, 2014 50



How Do You Revoke a Certificate?

• Revocation is hard! Verification can be done offline; revocation
requires some form of connectivity

• Publish the URL of a list of revoked certificates
+One reason for certificate expiration dates; you don’t need to keep
revocation data forever

• Online status checking

Steven M. Bellovin January 16, 2014 51



What Certificates Do You Accept?

• Browers and (some) mailers have built-in list of CAs

• What were the listing criteria?

• Do you trust the CAs?

• What are their policies? Verisign’s Certification Practice Statement
(CPS) is at http:
//www.verisign.com/repository/CPSv3.8.1_final.pdf.
Have you read it?

• All certificate verification has to start from trust anchors; these must
be locally provisioned. (Firefox trusts about 200 CAs; Windows IE
trusts > 300—and at least 10% are agencies of some government)

Steven M. Bellovin January 16, 2014 52



The Risks of Built-in CAs

It’s amusing to read Baltimore’s complex corporate history

Steven M. Bellovin January 16, 2014 53



A Protected Web Page: Session Information

Steven M. Bellovin January 16, 2014 54



A Protected Web Page: Certificate Overview

Steven M. Bellovin January 16, 2014 55



A Protected Web Page: Certificate Details

Steven M. Bellovin January 16, 2014 56



Cryptographic Protocols

• Combine various cryptographic primitives in a series of messages

• Many different types, for many different goals

• Simplest example: “realistic” public key encryption message
discussed earlier: 〈{m}k, (pad(k))e mod n〉

• Very common goal: Alice and Bob must agree on a key

• Very subtle; very hard to get right. Don’t try it yourself

Steven M. Bellovin January 16, 2014 57



Recommended Primitives

• Block cipher: AES

• Stream cipher: RC4? It’s now known to be cryptographically weak;
AES in Output Feedback Mode or Counter Mode are better. . .

• Hash function: SHA2-256 (SHA-1 is being phased out)

• Public key, digital signature: RSA with 2048-bit modulus (or Elliptic
Curve Cryptography—but watch out for patents)

Steven M. Bellovin January 16, 2014 58



What if You’re Hacked?

• Cryptography prevents certain attacks; it doesn’t guard against buggy
code

• If you’re hacked, the attacker can steal your private key

• If past traffic has been recorded, it can all be read, too

• We need a new cryptographic trick. . .

Steven M. Bellovin January 16, 2014 59



Diffie-Hellman (DH) Key Exchange

• Logarithms are easy to calculate: given a and ax, it’s easy to find x

• Discrete logarithms are difficult: given a and ax mod p, where p is a
large prime, it’s very, very hard to find x

• Alice and Bob agree ahead of time on a and p

• Alice picks a random large x and sends (ax mod p) to Bob; Bob
picks a large random y and sends (ay mod p) to Alice

• Alice knows x; she calculates ((ay)x mod p) ≡ (axy). Bob knows y

and can calculate the same value

• An eavesdropper knows only (ax mod p) and (ay mod p), cannot
recover x or y, and hence cannot calculate axy.

• Derive a communication key from this shared secret: axy

Steven M. Bellovin January 16, 2014 60



Perfect Forward Secrecy

• DH provides an unauthenticated shared secret

• To use it, Alice and Bob must digitally sign the exchange

• If you set up a communications channel protected by such a shared
secret, you have perfect forward secrecy : the attacker can read new
sessions but not old ones

• Why not? Each session is protected by a fresh pair of random
numbers; these are not stored, and hence are not recoverable by the
attacker

• For new sessions while the attackers are still on your machine, they
can see the random numbers that you use

Steven M. Bellovin January 16, 2014 61



How Does a User Store a Key?

• Store key on disk, encrypted

• Generally decrypted with passphrase

• Passphrases are weak, but they’re a second layer, on top of OS file
access controls

Steven M. Bellovin January 16, 2014 62



How Does a Server Store a Key?

• In a file? If the server is hacked, the key can be stolen

• Encrypted with a passphrase? What happens at reboot time?

• Secure cryptographic hardware

+ Many PCs have a TPM (Trusted Platform Module) chip that can do
some of this

Steven M. Bellovin January 16, 2014 63



Secure Cryptographic Hardware

• Can be used for users or servers

• More than just key storage; perform actual cryptographic operations

• Enemy has no access to secret or private keys

• Friends have no access, either

• Modular exponentiation can be done much faster with dedicated
hardware

Steven M. Bellovin January 16, 2014 64



Hardware Issues

• Hardware must resist physical attack

• Environmental sensors: detect attack and erase keys

• Example: surround with wire mesh of known resistance; break or
short circuit is detected

• Example: temperature sensor, to detect attempt to freeze battery

Steven M. Bellovin January 16, 2014 65



Limitations of Cryptographic Hardware

• Tamper-resistant, not tamper-proof

• Again: who is your enemy, and what are your enemy’s powers?

• (Remember the “crypto in the hands of the enemy” problem.)

• How does Alice talk to it securely? How do you ensure that an enemy
doesn’t talk to it instead?

• What is Alice’s intent? How does the crypto box know?

• What if there are bugs in the cryptographic processor software?
(IBM’s 4758 has a 486 inside. That can run complex programs. . . )

Steven M. Bellovin January 16, 2014 66



Summary of Key Management
and Key Handling

• Sharing cryptographic keys is a delicate business

• Protecting keying material is crucial

• There are no great solutions for general-purpose systems, though
proper hardware can prevent compromise (but not misuse) of
long-term keys

Steven M. Bellovin January 16, 2014 67



Random Numbers

• Random numbers are vital for cryptography

• They’re used for keys, nonces, primality testing, and more

• Where do they come from?

Steven M. Bellovin January 16, 2014 68



What is a Random Number?

• Must be unpredictable

• Must be drawn from a large-enough space

• Ordinary statistical-grade random numbers are not sufficient

• Distribution not an indication of randomness: loaded dice are still
random!

Steven M. Bellovin January 16, 2014 69



Generating Random Numbers

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

—John von Neumann, 1951

Steven M. Bellovin January 16, 2014 70



Sources of Random Numbers

• Dedicated hardware random number sources

• Random numbers lying around the system

• Software pseudo-random generator

• Combinations

Steven M. Bellovin January 16, 2014 71



Hardware Random Number Generators

• Radioactive decay

• Thermal noise

• Oscillator pairs

• Other chaotic processes

Steven M. Bellovin January 16, 2014 72



Radioactive Decay

• Timing of radioactive decay unpredictable even in theory—it’s a
quantum process

• Problem: low bit rate from rational quantities of radioactive material

• Problem: not many computers have Geiger counters or radioactive
isotopes attached. . .

• See http://www.fourmilab.ch/hotbits/hardware.html

and http://www.fourmilab.ch/hotbits/hardware3.html

for a description of how to do it. . .

Steven M. Bellovin January 16, 2014 73



Thermal Noise

• Any electronic device has a certain amount of random noise (thermal
noise in the components)

• Example: Take a sound card with no microphone and turn up the gain
to maximum

• Or use a digital camera with the lens cap on

• Problem: modest bit rate

Steven M. Bellovin January 16, 2014 74



Oscillator Pairs

• Have a free-running fast R-C oscillator (don’t use a crystal; you don’t
want it accurate or stable!)

• Have a second, much slower oscillator

• At each maximum of the slow oscillator, sample the value of the fast
oscillator

• Caution: watch for correlations or couplings between the two

Steven M. Bellovin January 16, 2014 75



Other Chaotic Processes

• Mouse movements

• Keystroke timing (low-order bits)

• Network packet timing (low-order bits)

• Disk seek timing: air turbulence affects disk internals (but what about
solid state disks?)

• Problem: what if the enemy can observe the process?

• Cameras and Lava Lites R©! (http://www.lavarnd.org/)

Steven M. Bellovin January 16, 2014 76



Problems

• Need deep understanding of underlying physical process

• Stuck bits

• Variable bit rate

• How do we measure their randomness?

• Assurance—how do we know it’s working properly?

Steven M. Bellovin January 16, 2014 77



Software Generators

• Generally called PRNGs—pseudo-random number generators

• Again, ordinary generators, such as C’s random() function or Java’s
Random class are insufficient

• Can use cryptographic primitives—encryption algorithms or hash
functions—instead

• But—where does the seed come from?

Steven M. Bellovin January 16, 2014 78



Typical Random Number Generator

unsigned int

nextrand()

{
static unsigned int state = 1;

state = f(state);

return state;

}

What’s wrong with this for cryptographic purposes?

Steven M. Bellovin January 16, 2014 79



Problems

• The seed is predictable

• There are too few possible seeds

• The output is the state variable; if you learn one value, you can
predict all subsequent ones

Steven M. Bellovin January 16, 2014 80



A Better Version

unsigned int

nextrand()

{
static unsigned int state;

static int first = 1;

if (first) {first = 0; state = truerand();}
state = f(state);

return sha1(state);

}

Steven M. Bellovin January 16, 2014 81



Much Better

• State is initialized from a true-random source

• Can’t invert sha1() to find state from return value

• But there is a serious problem here. What is it?

Steven M. Bellovin January 16, 2014 82



State Space

• sha1() isn’t invertible, but we can do a brute force analysis

• state is too short, and can can be found in 232 tries

• Estimated resources on a 3.4 Ghz Pentium: 3.6 hours CPU time; 150
GB

• Parallelizes nicely

• Need enough state—and hence enough true-random bits—that brute
force is infeasible.

Steven M. Bellovin January 16, 2014 83



Private State

• An application can keep a file with a few hundred bytes of random
numbers

• Generate some true-random bytes, mix with the file, and extract what
you need

• Write the file back to disk—read-protected, of course—for next time

Steven M. Bellovin January 16, 2014 84



OS Facilities

• Many operating systems can provide cryptographic-grade random
numbers

• /dev/random: True random numbers, from hardware sources

• /dev/urandom: Software pseudo-random number generator,
seeded from hardware

• Windows has analogous facilities

Steven M. Bellovin January 16, 2014 85



A Well-Known Failure

• Wagner and Goldberg attacked Netscape 1.1’s cryptographic random
number generator

• Generator was seeded from process ID, parent process ID, and time
of day

• ps command gives PID and PPID

• Consult the clock for time of day in seconds

• Iterate over all possible microsecond values

• Note: they did this by reverse-engineering; they did not have browser
source code

• http:

//www.cs.berkeley.edu/˜daw/papers/ddj-netscape.html

Steven M. Bellovin January 16, 2014 86



NIST, the NSA, and Random Numbers

• According to published reports based on the Snowden leaks, the
NSA put a back door in a recent pseudo-random generator standard

• There’s a number in the spec that can act like a public key

• If NSA knows the private key and 32 bytes of output from the
generator, they can predict all future values

Steven M. Bellovin January 16, 2014 87



Hardware Versus Software
Random Number Generators

• Hardware values can be true-random

• Output rate is rather slow

• Subject to environmental malfunctions, such as 60 Hz noise

• Software, if properly written, is fast and reliable

• Combination of software generator with hardware seed is usually best

Steven M. Bellovin January 16, 2014 88



Random Summary

• To paraphrase Knuth, random numbers should not be generated by a
random process

• In many systems, hardware and software, random number generation
is a very weak link

• Use standard facilities when available; if not, pay attention to RFC
4086

Steven M. Bellovin January 16, 2014 89



Cryptographic Threat Model

• Who is your enemy?

• Most ordinary attackers cannot exploit cryptographic weaknesses

• WEP is a notable exception: there are canned cracking programs

• Bad cryptography will keep out ordinary attackers

• Governments can and do exploit bad cryptography

• Note: even bad cryptography will slow down governments, especially
against broad-scale monitoring

Steven M. Bellovin January 16, 2014 90



(Apparent) State-Launched Cryptographic
Attacks

• Stuxnet (attributed to the United States and Israel) used genuine
certificates for which the private keys had been stolen

• Flame (a relative of Stuxnet) used a previously-unknown attack on
MD5 to generate fraudulent certificates

+ The attack had a complexity of at least 246.6 and was optimized for
massively parallel hardware

• There have been several attacks (attributed to Iran) involving fake
certificates generated by hacking a commercial certificate authority

• There are probably more of these in the wild that have not yet been
detected

Steven M. Bellovin January 16, 2014 91



Putting it All Together

• Only use standard cryptographic primitives

• Only use standard cryptographic protocols

• Pick your trust anchors carefully

• Protect your long-term keys

Steven M. Bellovin January 16, 2014 92


