Cryptographic Applications:
PGP

Asymmetric encryption refresher:

* One key mathematically ¢ You can signh data with

related to the other. the private key and
e Public key can be verify the signature
generated from private using the public key

key. But NOT vice versa.

(8] ")

4. MR

\
W\ =
U R

e If you encrypt data with :
the public key, you m
need to private key to
decrypt

keys

* Private key is kept * Public key is distributed.
SECRET. Anyone who needs to

* You should encrypt send you confidential
your private key with a data can use your public
symmetric passphrase. key

PGP: introduction

Created by Phil Zimmerman in 1991 originally using
symetric encryption

PGP 3 allowed for asymetric encryption

Zimmerman'’s team and Viacrypt (who’d licensed RSA
from RSADSI) merged to form PGP Inc in 1996

OpenPGP as a standard proposed to IETF in 1997 to
avoid patent issues.

PGP Inc now owned by Symantec

GPG is the Free Software Foundation’s implementation
of the OpenPGP standard

Signing & encrypting

Data is encrypted with a public key to be
decrypted with the corresponding private key.

Data can be signed with the private key to be
verified by anyone who has the corresponding
public key.

Since public keys are data they can be sighed too.

Hash functions that generate fixed length
fingerprints of any input data can be used to
identify keys that would otherwise be over 1024
bits long

trust

* Centralized / hierarchal trust — where certain
globally trusted bodies sign keys for every one
else.

* Decentralized webs of trust — where you pick
who you trust yourself, and decide if you trust
who those people trust in turn.

e Which works better for what reasons?

Sample web of trust.

Installing GhuPG Software

Core software either commercial from pgp or
opensource from gnupg.

https://www.gpgdwin.org/ for windows

https://www.gpgtools.org/ for OS X

Your package manager for Linux/UNIX

Source code from https://www.gnupg.org/

Key management: generation

* Using graphical tools based on what you
installed above:

— GPG Keychain Access for OS X
— Kleopatra or GPA for windows

* Using the command line:

—gpg --gen-key
* Generate a key — use your email address. The
comment field can be left blank.

Key management: distribution

On printed media: published book or business
cards:

Digitally in email or using sneaker-net
Online using the openpgp key servers.
Still does not tell you if you trust the key.

Key management: rollover

Expiry dates ensure that if your private key is
compromised they can only be used till they
expire.

Can be changed after creating the key.

Before expiry, you need to create a new key, sign
it with the old one, send the signed new one to
everyone in your web of trust asking them to sign
your new key.

Many people create keys that don’t expire. Think
about the security implications of that.

Key management: revocation

 Used to mark a key as invalid before its expiry
date.

* Always generate a revocation certificate as
soon as you create your key.

* Do not keep your revocation certificate with
your private key.
— gpg --gen-revoke IDENTITY

Key management: partying

Key signing parties are ways to build webs of
trust.

Each participant carries identification, as well as a
copy of their key fingerprint. (maybe some S as

well ©)
Each participant decides if they're going to sign
another key based on their personal policy.

Keys are easiest kept in a keyring on an openpgp
keyserver in the aftermath of the party.

Interesting gpg commands

Get help for gpg options
— gpg --help AND man gpg

Print the fingerprint of a particular key
—gpg --fingerprint IDENTITY
IDENTITY = email or PGP key ID

Export a public key to an ASCIl armored file.

—gpg —-a --output my-public-key.asc
——export IDENTIY

Interesting gpg commands

* Import a key from a file into your keyring
— gpg —--import public.asc

* Import a key from a keyserver
— gpg --recv-keys --keyserver hkp://keys.gnupg.net

* Send your key to a keyserver

— gpg --send-keys --keyserver hkp://keys.gnupg.net
* Sign a key

— gpg --sign-key IDENTITY

