

Virtual Machine Migration

NSRC

Migration

Host 1

Guest

Host 2

● Moving a VM from one host to another

Applications

● Load balancing

– Move VMs to a less busy host

– Make use of newly-added capacity

● Maintenance

– Move VMs off a host before it is shut down

● Recovery from host failure

– Restart VM on a different host

Types of migration

● Cold migration

– Shutdown VM on host 1, restart on host 2

● Warm migration

– Suspend VM on host 1, copy across RAM and CPU
registers, continue on host 2 (some seconds later)

● Live migration

– Copy across RAM while VM continues to run

– Mark "dirty" (changed) RAM pages & re-copy

– Brief suspension for fnal copy (<< 1 sec)

Migration and libvirt

● It does work, but not the ideal tool

● libvirt manages individual hosts, so it doesn't
have a cluster-wide view

– by default won't prevent the same VM starting up in
two places at once (very bad!)

● "sanlock" plugin available

– can end up with multiple copies of the XML
defnition fle on different hosts

Migration and Storage

● The VM disk image has to be accessible from
the new host after the migration

● Just copy the image across?

– Slow

– Fine for a cold migration though

● Can we do a "live migration" of storage?

– Yes (e.g. very recent versions of kvm can do this)

– Risky

– Doesn't help recover from node failure

Traditional solution: shared storage

Host Host Host

Storage

VM images

Guest Guest Guest Guest Guest Guest

Advantages of shared storage

● Complete mobility of VMs with live migration

● Can scale the compute nodes and the storage
nodes independently

● Simpler compute nodes

– little or no local storage required

● Central point of volume management

● Central point of backup / DR

Disadvantages of shared storage

● Storage becomes single point of failure

● Network becomes single point of failure

● Network bandwidth can be a bottleneck

● Network latency can impact performance

● Network security

– keep storage on a completely separate network

● Risk of accidentally starting two VMs using the
same disk image!

Avoiding storage server SPOF

● This is very hard to build correctly

● Vendors will sell this to you for $$$

Dual-attached
disk shelf

Active
Headend

Standby
Headend

Heart
beat

Clustered storage server

Avoiding network SPOF

Or you can buy a really expensive chassis switch with multiple power supplies, line
cards, switching fabrics and management cards

Dual switches

Host Host Host

Storage

Network bandwidth

10Gig

Note: 1Gbps ≈ 100MB/sec ≈ throughput of a single hard drive

1Gig or 10Gig

Host Host Host

Storage

Latency

● Time between sending a request and receiving
the reply

● Some applications are very latency sensitive

– e.g. a database which writes to disk and waits for
confrmation that data has been written

● Networking adds to the latency

– 10G on CAT6/RJ45 has higher latency than fbre or
SFP+ direct-attach cables

– alternatives to ethernet: fbre channel, infniband

Questions?

Shared storage protocols

● Fundamentally two types:

● Shared flesystem

– a.k.a. "Network Attached Storage" or "NAS"

● Shared block device

– a.k.a. "Storage Area Network" or "SAN"

Shared flesystem

● Client has remote access to server's flesystem

– requests like "read directory", "open fle named X"

● Examples:

– NFS

– CIFS (Windows/Samba shares)

● VM images are just fles on the server

– very easy to set up and understand

– directory of image fles, just happens to be remote

– disk image fles may support snapshots

Using shared flesystem

mount s1:/var/lib/libvirt/images /mnt
ls /mnt
debian1.img
debian2.img
debian3.img
debian4.img
...

Limitations of shared flesystem

● Overhead of traversing the kernel flesystem at
both client side and server side

● Usual issues with disk images at the server side
(e.g. fragmentation)

Shared block device

● Remote requests to read/write block N

– this is closer to what the VM expects

● Server side can map these requests to a
physical drive, a logical volume or an image fle

● Examples:

– iSCSI (standard, heavyweight)

– nbd (Linux only)

– ggated (FreeBSD only)

– Fibre Channel ($$$)

nbd: server side

/etc/nbd-server/config
[generic]
 user = nbd
 group = nbd
 includedir = /etc/nbd-server/conf.d
 listenaddr = 10.10.0.241
 oldstyle = true

Repeat for each volume to export
[disk1]
 exportname = /data/nbd/disk1.img
 port = 20001
 flush = true
 fua = true

"Old style" nbd protocol uses a different TCP port per volume. New servers use
named volumes all accessible on the same port (10809)

nbd: client side

nbd-client s1.ws.nsrc.org 20001 /dev/nbd0
blockdev --getsize64 /dev/nbd0
2147483648

...

nbd-client -d /dev/nbd0

● You can use /dev/nbd0 just as you would a local
block device (mkfs, mount etc)

nbd: direct access from KVM

● KVM knows how to speak the nbd protocol - so
it can bypass the kernel's nbd client

 <disk type='network' device='disk'>
 <driver name='qemu' type='raw'/>
 <source protocol='nbd'>
 <host name='s1.ws.nsrc.org' port='20001'/>
 </source>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0'... />
 </disk>

nbd limitations

● Changing the confg fle requires a server
restart, which can impact on active clients

– Clients may see I/O errors
● kvm's built-in nbd client fails to reconnect?
● apt-get install -t wheezy-backports qemu-kvm

● Still doesn't seem to work right

– Pre-create logical volumes and export them before
you need them?

● No security, apart from optional "IP allow"

– Keep all nbd traffc on a separate network!

nbd tricks

● Alternative nbd server implementations

– xnbd-server
● nbd proxy for migrating disk images

– fexnbd-c
● separate IPv6 address per volume, migration support

● Test them before deployment!

Alternatives to shared storage

● Distributed storage

– Examples:
● Sheepdog - for KVM images only
● Ceph (rbd) - general purpose
● Glusterfs

– Data is stored on multiple nodes
● In principle resilient against loss of single node
● Complexity, "split brain" problems

● Replicated storage

– drbd - as used by Ganeti

Summary

● Migration of virtual machines allows load
balancing and cluster maintenance

● Live migration makes this invisible to VM users

– can achieve very high uptime

● Access to storage is the key

● Various options for shared, distributed or
replicated storage

● Can be diffcult and expensive to build for high
availability

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

