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Migration
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● Moving a VM from one host to another



  

Applications

● Load balancing

– Move VMs to a less busy host

– Make use of newly-added capacity

● Maintenance

– Move VMs off a host before it is shut down

● Recovery from host failure

– Restart VM on a different host



  

Types of migration

● Cold migration

– Shutdown VM on host 1, restart on host 2

● Warm migration

– Suspend VM on host 1, copy across RAM and CPU 
registers, continue on host 2 (some seconds later)

● Live migration

– Copy across RAM while VM continues to run

– Mark "dirty" (changed) RAM pages & re-copy

– Brief suspension for fnal copy (<< 1 sec)



  

Migration and libvirt

● It does work, but not the ideal tool

● libvirt manages individual hosts, so it doesn't 
have a cluster-wide view

– by default won't prevent the same VM starting up in 
two places at once (very bad!)

● "sanlock" plugin available

– can end up with multiple copies of the XML 
defnition fle on different hosts



  

Migration and Storage

● The VM disk image has to be accessible from 
the new host after the migration

● Just copy the image across?

– Slow

– Fine for a cold migration though

● Can we do a "live migration" of storage?

– Yes (e.g. very recent versions of kvm can do this)

– Risky

– Doesn't help recover from node failure



  

Traditional solution: shared storage
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Advantages of shared storage

● Complete mobility of VMs with live migration

● Can scale the compute nodes and the storage 
nodes independently

● Simpler compute nodes

– little or no local storage required

● Central point of volume management

● Central point of backup / DR



  

Disadvantages of shared storage

● Storage becomes single point of failure

● Network becomes single point of failure

● Network bandwidth can be a bottleneck

● Network latency can impact performance

● Network security

– keep storage on a completely separate network

● Risk of accidentally starting two VMs using the 
same disk image!



  

Avoiding storage server SPOF

● This is very hard to build correctly

● Vendors will sell this to you for $$$
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Avoiding network SPOF

Or you can buy a really expensive chassis switch with multiple power supplies, line 
cards, switching fabrics and management cards

Dual switches

Host Host Host

Storage



  

Network bandwidth

10Gig

Note: 1Gbps ≈ 100MB/sec ≈ throughput of a single hard drive

1Gig or 10Gig

Host Host Host

Storage



  

Latency

● Time between sending a request and receiving 
the reply

● Some applications are very latency sensitive

– e.g. a database which writes to disk and waits for 
confrmation that data has been written

● Networking adds to the latency

– 10G on CAT6/RJ45 has higher latency than fbre or 
SFP+ direct-attach cables

– alternatives to ethernet: fbre channel, infniband



  

Questions?



  

Shared storage protocols

● Fundamentally two types:

● Shared flesystem

– a.k.a. "Network Attached Storage" or "NAS"

● Shared block device

– a.k.a. "Storage Area Network" or "SAN"



  

Shared flesystem

● Client has remote access to server's flesystem

– requests like "read directory", "open fle named X"

● Examples:

– NFS

– CIFS (Windows/Samba shares)

● VM images are just fles on the server

– very easy to set up and understand

– directory of image fles, just happens to be remote

– disk image fles may support snapshots



  

Using shared flesystem

# mount s1:/var/lib/libvirt/images /mnt
# ls /mnt
debian1.img
debian2.img
debian3.img
debian4.img
...



  

Limitations of shared flesystem

● Overhead of traversing the kernel flesystem at 
both client side and server side

● Usual issues with disk images at the server side 
(e.g. fragmentation)



  

Shared block device

● Remote requests to read/write block N

– this is closer to what the VM expects

● Server side can map these requests to a 
physical drive, a logical volume or an image fle

● Examples:

– iSCSI (standard, heavyweight)

– nbd (Linux only)

– ggated (FreeBSD only)

– Fibre Channel ($$$)



  

nbd: server side

/etc/nbd-server/config
[generic]
        user = nbd
        group = nbd
        includedir = /etc/nbd-server/conf.d
        listenaddr = 10.10.0.241
        oldstyle = true

# Repeat for each volume to export
[disk1]
        exportname = /data/nbd/disk1.img
        port = 20001
        flush = true
        fua = true

"Old style" nbd protocol uses a different TCP port per volume. New servers use 
named volumes all accessible on the same port (10809)



  

nbd: client side

# nbd-client s1.ws.nsrc.org 20001 /dev/nbd0
# blockdev --getsize64 /dev/nbd0
2147483648

...

# nbd-client -d /dev/nbd0

● You can use /dev/nbd0 just as you would a local 
block device (mkfs, mount etc)



  

nbd: direct access from KVM

● KVM knows how to speak the nbd protocol - so 
it can bypass the kernel's nbd client

    <disk type='network' device='disk'>
      <driver name='qemu' type='raw'/>
      <source protocol='nbd'>
        <host name='s1.ws.nsrc.org' port='20001'/>
      </source>
      <target dev='hda' bus='ide'/>
      <address type='drive' controller='0'... />
    </disk>



  

nbd limitations

● Changing the confg fle requires a server 
restart, which can impact on active clients

– Clients may see I/O errors
● kvm's built-in nbd client fails to reconnect?
● apt-get install -t wheezy-backports qemu-kvm

● Still doesn't seem to work right

– Pre-create logical volumes and export them before 
you need them?

● No security, apart from optional "IP allow"

– Keep all nbd traffc on a separate network!



  

nbd tricks

● Alternative nbd server implementations

– xnbd-server
● nbd proxy for migrating disk images

– fexnbd-c
● separate IPv6 address per volume, migration support

● Test them before deployment!



  

Alternatives to shared storage

● Distributed storage

– Examples:
● Sheepdog - for KVM images only
● Ceph (rbd) - general purpose
● Glusterfs

– Data is stored on multiple nodes
● In principle resilient against loss of single node
● Complexity, "split brain" problems

● Replicated storage

– drbd - as used by Ganeti



  

Summary

● Migration of virtual machines allows load 
balancing and cluster maintenance

● Live migration makes this invisible to VM users

– can achieve very high uptime

● Access to storage is the key

● Various options for shared, distributed or 
replicated storage

● Can be diffcult and expensive to build for high 
availability
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