

Security with SSH

Network Startup Resource Center

http://www.nsrc.org/

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license

(http://creativecommons.org/licenses/by-nc/4.0/)

• What is SSH

• Where to get SSH

• How to enable and configure SSH

• Where to get SSH clients for Windows

• Host keys: authentication of server to client

• Issues to do with changing of the host key

• Password authentication of client to server

• Cryptographic authentication client to server

• hostkey exchange, scp, and sftp labs

Topics

From Wikipedia:

Secure Shell (SSH) is a cryptographic network protocol for secure

data communication, remote command-line login, remote command
execution, and other secure network services between two
networked computers that connects, via a secure channel over an
insecure network, a server and a client (running SSH server and
SSH client programs, respectively).

i.e., ssh gives you a secure command line interface on
remote machines…

What is SSH?

• Where SSH applies directly to dealing with

these two areas of security:
- Confidentiality

- Keeping our data safe from prying eyes

• Authentication and Authorization
- Is this person who they claim to be?

- With keys alternative method to passwords

Topics

• First see if SSH is installed on your system and what
version. Easiest way is:

$ ssh –V

• Commonly used SSH in Linux and FreeBSD is
OpenSSH. You can find the home page here:

http://www.openssh.org/

• You can install OpenSSH via packages on Linux and
FreeBSD. Ubuntu 12.04.3 LTS currently installs version
5.9p1 of OpenSSH.

Where to get SSH

There are several free, shareware, and commercial ssh clients for

Windows. See http://www.openssh.org/windows.html for a list.

Two free clients:

Putty: http://www.chiark.greenend.org.uk/~sgtatham/putty/

Secure Shell from ssh.com (free for personal use):
http://www.ssh.com/products/ssh/download.cfm

We will use Putty in this class and it is available on our local server.

Obtain SSH Client for Windows

FreeBSD

•/usr/ports/security/openssh-portable/make install

•You should make sure that /etc/rc.conf is set:

sshd_enable=”YES”

Linux

•Take a look at /etc/ssh/ssh_config and /etc/sshd_config. In
sshd_config you might be interested in:

PermitRootLogin yes/no (you generally want “no”)

•We'll allow root login, but only with keys in our exercises.

Many options in ssh_config & sshd_config. Read through these files to verify
they meet your expectations.

Enable & Configure OpenSSH

If you want a great SSH RSA/DSA key overview Daniel
 Robbins ex-CEO of gentoo.org has written a 3-part
 series hosted on the IBM Developer Works pages.

 The three papers and URL's are:

OpenSSH Key Management, Part 1

http://www-106.ibm.com/developerworks/library/l-keyc.html

OpenSSH Key Management, Part 2

http://www-106.ibm.com/developerworks/library/l-keyc2/

OpenSSH Key Management, Part 3

http://www-106.ibm.com/developerworks/library/l-keyc3/

Some Useful SSH Resources

For a comparison of SSH Version 1 and 2 see:

http://www.snailbook.com/faq/ssh-1-vs-2.auto.html

 An excellent book on SSH is:

SSH, The Secure Shell
The Definitive Guide,
Second Edition.
By Daniel J. Barrett,
Richard Silverman, &
Robert G. Byrnes
May 2005
ISBN: 0-596-00895-3

More SSH References

Several things can happen when using SSH to connect

from your machine (client) to another machine (server):

Server's public host key is passed back to the client and

verified against known_hosts

Password prompt is used if public key is accepted, or

already on client, or

RSA/DSA key exchange takes place and you must

enter in your private key passphrase to

authenticate (assuming you have one).

SSH Connection Methods

You have a choice of authentication keys - RSA is

the default (dsa is fine as well).

The files you care about are:

/etc/ssh/ssh_config
/etc/ssh/sshd_config
~/.ssh/id_dsa and id_dsa.pub
~/.ssh/id_rsa and id_rsa.pub
~/.ssh/known_hosts
~/.ssh/authorized_keys
And, note the rsa/dsa host-wide key files in /etc/ssh

SSH Quick Tips

Private key can be protected by a passphrase

So you have to give it each time you log in

Or use "ssh-agent" which holds a copy of your
passphrase in RAM

No need to change passwords across dozens of
machines

Disable passwords entirely!

/etc/ssh/ssh_config
PasswordAuthentication yes

SSH Authentication

The first time you connect to a remote host, its
public key is stored in ~/.ssh/known_hosts

The next time you connect, if the remote key is
different, then maybe an attacker is intercepting
the connection!

Or maybe the remote host has just got a new key,
e.g. after a reinstall. But it's up to you to resolve.

You will be warned if the key changes.

Man in the Middle Attacks

First time connecting with ssh:

ssh username@pc1.cctld.pacnog2.dnsdojo.net
The authenticity of host 'pc1.cctld.pacnog2.dnsdojo.net (202.4.34.65)' can't
be established.
DSA key fingerprint is 91:ba:bf:e4:36:cd:e3:9e:8e:92:26:e4:57:c4:cb:da.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'pc1.cctld.pacnog2.dnsdojo.net, 202.4.34.1' (DSA)
to the list of known hosts.
username@pc1.cctld.pacnog2.dnsdojo.net's password:

At this point the client has in the file ~/.ssh/known_hosts the contents of
pc1.cctld.pacnog2.dnsdojo.net's /etc/ssh/ssh_host_dsa_key.pub.

Next connection:

[hallen@hallen-lt .ssh]$ ssh usrname@pc1.cctld.pacnog2.dnsdojo.net
username@pc1.cctld.pacnog2.dnsdojo.net's password:

Now trusted - Not necessarily a good thing...

Exchanging Host Keys

Command Key Type Generated Public File

ssh-keygen -t rsa RSA (SSH protocol 2) id_rsa.pub
ssh-keygen -t dsa DSA (SSH protocol 2) id_dsa.pub

Default key size is 1024 bits

Public files are text

Private files are encrypted if you use a passphrase

Corresponding file on host for host key exchange is
“known_hosts”.

Exchanging Host Keys (continued)

How does SSH decide what files to compare?

Look in /etc/ssh/sshd_config. For OpenSSH version
3 the server defaults to protocol 2 .

By default OpenSSH v2 client connects in order:

RSA version 2 key
DSA version 2 key
Password based authentication (even if RSA
version 1 key is present)

Pay attention to the “HostKeyAlgorithms” setting in /etc/ssh/ssh_config to help
determine this order - or use ssh command line switches to override these settings.

Exchanging Host Keys (continued)

How an SSH connection is made using RSA/DSA key combo:

– Client X contacts server Y via port 22.

– Y generates a random number and encrypts this using
X's public key. X's public key must reside on Y. You can
use scp to copy this over.

– Encrypted random number is sent back to X.

– X decrypts the random number using it's private key and
sends it back to Y.

– If the decrypted number matches the original encrypted

number, then a connection is made.

– The originally encrypted random number sent from Y to X
is the “Magic Phrase”

SSH Magic Phrase

You can use SSH to tunnel insecure services in a

secure manner.

SSH tunneling services includes authentication
between known_hosts, password challenge, and
public/private key exchanges.

You can even indirectly tunnel via an
intermediary machine.

Tunneling with SSH

Connect from one machine to another as username.

Use ssh options to specify the port number on the
remote machine that you wish to forward to the
port on your local machine.

Your ssh connection will “tunnel” data securely
across ssh from the remote machine to your local
machine.

There are several options to be aware of.

Tunneling with SSH: Concept

Sample tunnel using SSH under FreeBSD:

ssh -C -f username@host.domain -L 1100:localhost:110 sleep 10000

What is happening here?

'-C' option specifies compress the data. Good if it works.

'-f' means ssh goes to the background just before executing the

specified command listed (in this case, “sleep 10000”).

'-L' forwards the port on the left, or client (1100) to the one on the

right (110) or remote side.

Tunneling with SSH: By Example

So, what does this command do?

ssh -C -f username@host.domain -L 1100:localhost:110 sleep 10000

This “tunnels” your POP email from port 110 on the remote side through port 1100 on
your local side.

The process backgrounds for 10000 seconds (detaches and runs).

This is done under the authority between yourself (client) and user@host.domain

Diagram of Tunneling both smtp and POP Services

 Host.domain:110
localhost:1100 o-<+----------+ ~ ~ +----------+>--<<--o-------------+
 |SSH Client|~ ~ ~ ~ ~|SSH Server| | mail server |
localhost:2500 o->+----------+ ~ ~ +----------+>-->>--o-------------+
 host.domain:25

SSH Tunneling Example (continued)

Why use something like ports “1100” and “2500”?

Ports up to 1024 can only be reset by the admin user.

If you are admin you can forward 110 to 110, 25 to 25, and so on.

Other popular tunneling tricks include tunnels for XWindows, IMAP, etc.

On the client side you must set programs to use “localhost” - For example,

for POP and smtp, your mail client must use “localhost” instead of

host.domain (i.e. no more “mail.host.domain”).

If you are not admin, and your ports are changed, then your mail client

must be able to set the smtp and POP ports as well.

We may show or discuss this using a local email client now.

SSH Tunneling Example (continued)

What to do if your organization's email sits behind a firewall?

Connect via an intermediary box (gateway).

Here's a real world example:

localhost:1100 o-<+----------+ ~ ~ +----------+>--<<--o-------------+..
 |SSH Client|~ ~ ~ ~ ~|SSH Server| | gateway |..
localhost:2500 o->+----------+ ~ ~ +----------+>-->>--o-------------+..

 host.domain:110
...>--<<--+----------+>--<<--o-------------+
 |SSH Server| | mail.us.tlan|
...>-->>--+----------+>-->>--o-------------+
 host.domain:25

Ssh -C -f hallen@gateway.turbolinux.com -L 2500:mail.us.tlan:25 -L
1100:mail.us.tlan:110 /bin/sleep 10000

SSH Indirect Port Forwarding

http://mail.us.tlan/

Tunneling lets you securely access basic services such
as POP and IMAP.

You can securely tunnel ports using SSH.

You can use /etc/services to verify you are not using a
port that is already defined.

Only admin can redefine ports below 1024

You can tunnel ports directly between two machines,
and indirectly with a machine in the middle.

SSH Tunneling Conclusion

	Slide 1
	Topics
	What is SSH?
	Slide 4
	Where to Get SSH
	Obtain SSH Clients for Windows
	Enable and Configure OpenSSH
	PowerPoint Presentation
	More SSH References
	SSH Connection Methods
	SSH Quick Tips
	SSH Authentication
	Man in the Middle Attacks
	Exchanging Host Keys
	Exchanging Host Keys Cont.
	Slide 16
	SSH - “Magic Phrase”
	Slide 18
	Tunneling with SSH Cont.
	Tunneling with SSH Cont.
	Slide 21
	Slide 22
	Slide 23
	Tunneling with SSH Conclusion
	Slide 1
	Topics
	What is SSH?
	Slide 4
	Where to Get SSH
	Obtain SSH Clients for Windows
	Enable and Configure OpenSSH
	PowerPoint Presentation
	More SSH References
	SSH Connection Methods
	SSH Quick Tips
	SSH Authentication
	Man in the Middle Attacks
	Exchanging Host Keys
	Exchanging Host Keys Cont.
	Slide 16
	SSH - “Magic Phrase”
	Slide 18
	Tunneling with SSH Cont.
	Tunneling with SSH Cont.
	Slide 21
	Slide 22
	Slide 23
	Tunneling with SSH Conclusion

