

Virtualization Overview

NSRC

Terminology

● Virtualization: dividing available resources into
smaller independent units

● Emulation: using software to simulate hardware
which you do not have

● The two often come hand-in-hand
– e.g. we can virtualize a PC by using it to emulate a

collection of less-powerful PCs

Benefits

● Consolidation
– Most systems are under-utilized, especially the

CPU is idle for much of the time

– Do more work with less hardware

– Reduced space and power requirements

● Management
– Less hardware inventory to manage

– Concentrate your resilience efforts

– Increased isolation between services

– Abstract away (hide) differences in hardware

Benefits

● Flexibility
– Grow systems on demand (e.g. allocate more CPU

or RAM where it is needed)

– Create new services quickly without having to install
new hardware every time

– Dynamically create and destroy instances for
testing and development

● New capabilities
– Snapshot/restore, cloning, migration, …

– Run different OSes on the same machine at once

Virtualization: a familiar example

● Who has not seen this before?!
● Like having two (or more) hard drives

– you get to choose the sizes

● Why is this useful?

500GBC:
200GB

D:
300GB

real drive

virtual drive virtual drive

How does partitioning work?

● Partition table is an example of metadata
● When the OS wants to access the Nth block, the

real disk access is block (N+offset)

C: D:

1 100 199999

2 200000 500000

Partition table

5000000

start offset end

Implementation: translation layer

● Very simple and fast: just add offset
● Data is contiguous on disk
● Moving/resizing a partition can require copying

all the data on the disk :-(

block translation

"read C: block 5"

"read SATA block 105"

Another example

● Virtualize a switch: VLANs
– like dividing a switch into separate switches

● Benefits:
– can keep traffic separate (broadcast domains)

– can create VLANs and how they are assigned to
ports, purely through software configuration

– can combine VLANs onto a single cable and split
them out again (tagging/trunking)

VLANs

Emulation

● In software, you can simulate the behaviour of
a device which doesn't exist

● Example: emulation of a CD-ROM drive using
an ISO file
– a request to read block N of the (virtual) CD-ROM

drive instead reads block N of the ISO file

– similar to partition mapping

● You can simulate any hardware - including the
CPU or an entire system!

Entire system emulation - examples

● Android SDK
– Emulates an Android smartphone with ARM CPU

– The "screen" is mapped to a window on your PC

Emulated devices

● There is no physical phone hardware
● So when the software executes an instruction

which tries to write to the "screen", this is
intercepted and does something else

● It instead updates a buffer in memory which
then gets drawn in a window

● The software running inside the emulator is
unaware that this is happening

More system emulation examples

● Dynamips / Dynagen / GNS3
– Emulates a Cisco router with MIPS CPU and

network interfaces

● QEMU
– Emulates an entire PC (i386 processor and

interfaces)

What's in a PC?

CPU + RAM

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

BIOS

Boot up sequence

● A small program (the BIOS) runs when machine
is switched on

● It uses the hardware to load an operating
system
– boot from hard drive, USB/CD-ROM, network...

● Modern operating systems then ignore the
BIOS from that point onwards

● The next slide shows a machine after it has
booted up (simplified)

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

KernelKernel

Points to note

● The device drivers in the OS interact with the
hardware

● User processes are forbidden by the OS from
interacting directly with the hardware
– the OS configures protection mechanisms to

enforce this

What we need

● To emulate a PC we must emulate all the
components of the PC
– hard disk interface, network card

– graphics card, keyboard, mouse

– clock, memory management unit etc

● We want multiple instances to co-exist and not
be able to interfere with each other
– access to memory must also be controlled

● The software to do this is called a hypervisor

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

HYPERVISOR

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

KernelKernel

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

KernelKernel

emulated
hardware

Virtual machine 1 Virtual machine 2

Virtual Machines

● Each emulated PC is a "virtual machine"
● Hypervisor allocates some real system RAM to

each VM, and shares the CPU time
● Hypervisor emulates other hardware, e.g. disk

and network interfaces
● Within each VM you can boot an operating

system
● Full hardware virtualization means different

VMs can be running different OSes

Virtualization terminology

● The host is the machine running the emulation
● The guest is the emulated (virtual) machine
● One host could be running many guests

Host
(OS + Hypervisor)

Guest
OS

Guest
OS

The Hypervisor

● Note that the Hypervisor itself is a component
of an operating system *
– It needs device drivers, a filesystem, a network

stack for remote management, etc

● So there is a host OS for the hypervisor, plus
guest OSes

* Even so-called "bare-metal" or "Type 1" Hypervisors include a cut-down operating system

Emulated disk hardware

● A hard drive is a "block device"
– OS makes requests like "read block number 42",

"write block number 99"

● Real hard drives have a fixed size!
– This is what the guest OS will expect to see

● So the hypervisor must redirect these accesses
to something else

Emulated disk hardware

● Options include:
– a disk image file on the host (simple)

– a partition or logical volume on the host (faster)

– a remote file or remote block device (via network)

● A disk image file is easy to backup and transfer
from host to host

● There are different ways to make a disk image
file. Suppose we want the guest to see a 10GB
virtual hard drive?

Options for a 10GB image file (1)

● A "raw" file is a just a plain 10GB data file
– Nth block of the virtual hard drive corresponds to the

Nth block in the image file

– if this is allocated up-front, you use 10GB of
(hopefully) contiguous space on the host

– Fast in operation, avoids fragmentation on the host

– Wasteful of space

– Slow to create

– Slow to copy

Options for a 10GB image file (2)

● Some OSes support "sparse" files or "holes"
– still looks like a plain 10GB file

● doesn't allocate space until each block is written to
● reading from unallocated space reads zeros
● the size of the file ("ls -l") is larger than the disk space

used by the file ("ls -s" or "du")

– can lead to fragmentation

– can lead to failures if filesystem becomes full

– if you are not careful, may expand to full 10GB
when you copy it

Options for a 10GB image file (3)

● Custom VM image format with header and data
– doesn't require OS support for sparse files

– can be copied without losing its "sparseness"

– also leads to fragmentation, unless you pre-allocate
all the space

● Various formats, e.g. VDI (virtualbox), VMDK
(VMware), QCOW2 (qemu/kvm)

● Also add features like snapshots

Disk image types
Raw file (preallocated)

Raw file (sparse)

Growable image file

H

H

Pre-allocated image file

Emulated network hardware

● Each guest NIC gets a fake MAC address
● Different ways to interconnect with host NIC
● "NAT": outbound packets translated to share

the host's IP address
● "Bridging": packets sent/received untranslated

over the host's physical NIC
– Each VM gets its own IP address on the ext

network

– More transparent

– Does not always work on wireless NICs though

Summary

● Virtualization can make better use of your
hardware by emulating more machines than
you really have

● The emulated environment is provided by a
hypervisor

● The hypervisor (host) lets you start up virtual
machines (guests) each with its own operating
system and emulated devices

● Guest hardware emulated using resources on
the host

