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Terminology

● Virtualization: dividing available resources into 
smaller independent units

● Emulation: using software to simulate hardware 
which you do not have

● The two often come hand-in-hand
– e.g. we can virtualize a PC by using it to emulate a 

collection of less-powerful PCs



  

Benefits

● Consolidation
– Most systems are under-utilized, especially the 

CPU is idle for much of the time

– Do more work with less hardware

– Reduced space and power requirements

● Management
– Less hardware inventory to manage

– Concentrate your resilience efforts

– Increased isolation between services

– Abstract away (hide) differences in hardware



  

Benefits

● Flexibility
– Grow systems on demand (e.g. allocate more CPU 

or RAM where it is needed)

– Create new services quickly without having to install 
new hardware every time

– Dynamically create and destroy instances for 
testing and development

● New capabilities
– Snapshot/restore, cloning, migration, …

– Run different OSes on the same machine at once



  

Virtualization: a familiar example

● Who has not seen this before?!
● Like having two (or more) hard drives

– you get to choose the sizes

● Why is this useful?

500GBC:
200GB

D:
300GB

real drive

virtual drive virtual drive



  

How does partitioning work?

● Partition table is an example of metadata
● When the OS wants to access the Nth block, the 

real disk access is block (N+offset)

C: D:

1 100 199999

2 200000 500000

Partition table

5000000

start offset end



  

Implementation: translation layer

● Very simple and fast: just add offset
● Data is contiguous on disk
● Moving/resizing a partition can require copying 

all the data on the disk :-(

block translation

"read C: block 5"

"read SATA block 105"



  

Another example

● Virtualize a switch: VLANs
– like dividing a switch into separate switches

● Benefits:
– can keep traffic separate (broadcast domains)

– can create VLANs and how they are assigned to 
ports, purely through software configuration

– can combine VLANs onto a single cable and split 
them out again (tagging/trunking)



  

VLANs



  

Emulation

● In software, you can simulate the behaviour of 
a device which doesn't exist

● Example: emulation of a CD-ROM drive using 
an ISO file
– a request to read block N of the (virtual) CD-ROM 

drive instead reads block N of the ISO file

– similar to partition mapping

● You can simulate any hardware - including the 
CPU or an entire system!



  

Entire system emulation - examples

● Android SDK
– Emulates an Android smartphone with ARM CPU

– The "screen" is mapped to a window on your PC



  

Emulated devices

● There is no physical phone hardware
● So when the software executes an instruction 

which tries to write to the "screen", this is 
intercepted and does something else

● It instead updates a buffer in memory which 
then gets drawn in a window

● The software running inside the emulator is 
unaware that this is happening



  

More system emulation examples

● Dynamips / Dynagen / GNS3
– Emulates a Cisco router with MIPS CPU and 

network interfaces

● QEMU
– Emulates an entire PC (i386 processor and 

interfaces)



  

What's in a PC?

CPU + RAM
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Boot up sequence

● A small program (the BIOS) runs when machine 
is switched on

● It uses the hardware to load an operating 
system
– boot from hard drive, USB/CD-ROM, network...

● Modern operating systems then ignore the 
BIOS from that point onwards

● The next slide shows a machine after it has 
booted up (simplified)
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Points to note

● The device drivers in the OS interact with the 
hardware

● User processes are forbidden by the OS from 
interacting directly with the hardware
– the OS configures protection mechanisms to 

enforce this



  

What we need

● To emulate a PC we must emulate all the 
components of the PC
– hard disk interface, network card

– graphics card, keyboard, mouse

– clock, memory management unit etc

● We want multiple instances to co-exist and not 
be able to interfere with each other
– access to memory must also be controlled

● The software to do this is called a hypervisor
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Virtual Machines

● Each emulated PC is a "virtual machine"
● Hypervisor allocates some real system RAM to 

each VM, and shares the CPU time
● Hypervisor emulates other hardware, e.g. disk 

and network interfaces
● Within each VM you can boot an operating 

system
● Full hardware virtualization means different 

VMs can be running different OSes



  

Virtualization terminology

● The host is the machine running the emulation
● The guest is the emulated (virtual) machine
● One host could be running many guests

Host
(OS + Hypervisor)

Guest
OS

Guest
OS



  

The Hypervisor

● Note that the Hypervisor itself is a component 
of an operating system *
– It needs device drivers, a filesystem, a network 

stack for remote management, etc

● So there is a host OS for the hypervisor, plus 
guest OSes

* Even so-called "bare-metal" or "Type 1" Hypervisors include a cut-down operating system



  

Emulated disk hardware

● A hard drive is a "block device"
– OS makes requests like "read block number 42", 

"write block number 99"

● Real hard drives have a fixed size!
– This is what the guest OS will expect to see

● So the hypervisor must redirect these accesses 
to something else



  

Emulated disk hardware

● Options include:
– a disk image file on the host (simple)

– a partition or logical volume on the host (faster)

– a remote file or remote block device (via network)

● A disk image file is easy to backup and transfer 
from host to host

● There are different ways to make a disk image 
file. Suppose we want the guest to see a 10GB 
virtual hard drive?



  

Options for a 10GB image file (1)

● A "raw" file is a just a plain 10GB data file
– Nth block of the virtual hard drive corresponds to the 

Nth block in the image file

– if this is allocated up-front, you use 10GB of 
(hopefully) contiguous space on the host

– Fast in operation, avoids fragmentation on the host

– Wasteful of space

– Slow to create

– Slow to copy



  

Options for a 10GB image file (2)

● Some OSes support "sparse" files or "holes"
– still looks like a plain 10GB file

● doesn't allocate space until each block is written to
● reading from unallocated space reads zeros
● the size of the file ("ls -l") is larger than the disk space 

used by the file ("ls -s" or "du")

– can lead to fragmentation

– can lead to failures if filesystem becomes full

– if you are not careful, may expand to full 10GB 
when you copy it



  

Options for a 10GB image file (3)

● Custom VM image format with header and data
– doesn't require OS support for sparse files

– can be copied without losing its "sparseness"

– also leads to fragmentation, unless you pre-allocate 
all the space

● Various formats, e.g. VDI (virtualbox), VMDK 
(VMware), QCOW2 (qemu/kvm)

● Also add features like snapshots



  

Disk image types
Raw file (preallocated)

Raw file (sparse)

Growable image file

H

H

Pre-allocated image file



  

Emulated network hardware

● Each guest NIC gets a fake MAC address
● Different ways to interconnect with host NIC
● "NAT": outbound packets translated to share 

the host's IP address
● "Bridging": packets sent/received untranslated 

over the host's physical NIC
– Each VM gets its own IP address on the ext 

network

– More transparent

– Does not always work on wireless NICs though



  

Summary

● Virtualization can make better use of your 
hardware by emulating more machines than 
you really have

● The emulated environment is provided by a 
hypervisor

● The hypervisor (host) lets you start up virtual 
machines (guests) each with its own operating 
system and emulated devices

● Guest hardware emulated using resources on 
the host


