Campus Network Design Workshop Layer 2 Engineering – Spanning Tree This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source. - When there is more than one path between two switches - What are the potential problems? - If there is more than one path between two switches: - Forwarding tables become unstable - Source MAC addresses are repeatedly seen coming from different ports - Switches will broadcast each other's broadcasts - All available bandwidth is utilized - Switch processors cannot handle the load Switches A, B and C broadcast node 1's frame out every port - But they receive each other's broadcasts, which they need to forward again out every port! - The broadcasts are amplified, creating a broadcast storm #### Good Switching Loops - But you can take advantage of loops! - Redundant paths improve resilience when: - A switch fails - Wiring breaks - How to achieve redundancy without creating dangerous traffic loops? ## What is a Spanning Tree? - "Given a connected, undirected graph, a spanning tree of that graph is a subgraph which is a tree and connects all the vertices together". - A single graph can have many different spanning trees. #### **Spanning Tree Protocol** The purpose of the protocol is to have bridges dynamically discover a subset of the topology that is loop-free (a tree) and yet has just enough connectivity so that where physically possible, there is a path between every switch #### **Spanning Tree Protocol** - Several standard flavors: - Traditional Spanning Tree (802.1d) - Rapid Spanning Tree or RSTP (802.1w) - Multiple Spanning Tree or MSTP (802.1s) - Old proprietary flavors: - Per-VLAN Spanning Tree or PVST (Cisco) #### Traditional Spanning Tree (802.1d) - Switches exchange messages that allow them to compute the Spanning Tree - These messages are called BPDUs (Bridge Protocol Data Units) - Two types of BPDUs: - Configuration - Topology Change Notification (TCN) #### Traditional Spanning Tree (802.1d) #### First Step: - Decide on a point of reference: the Root Bridge - The election process is based on the Bridge ID, which is composed of: - The Bridge Priority: A two-byte value that is configurable - The MAC address: A unique, hardcoded address that cannot be changed. #### Root Bridge Selection (802.1d) - Each switch starts by sending out BPDUs with a Root Bridge ID equal to its own Bridge ID - I am the root! - Received BPDUs are analyzed to see if a <u>lower</u> Root Bridge ID is being announced - If so, each switch replaces the value of the advertised Root Bridge ID with this new lower ID - Eventually, they all agree on who the Root Bridge is #### Root Bridge Selection (802.1d) - All switches have the same priority. - Who is the elected root bridge? - Now each switch needs to figure out where it is in relation to the Root Bridge - Each switch needs to determine its Root Port - The key is to find the port with the <u>lowest</u> Root Path Cost - The cumulative cost of all the links leading to the Root Bridge - Each link on a switch has a Path Cost - Inversely proportional to the link speed - e.g. The faster the link, the lower the cost | Link Speed | STP Cost | |------------|----------| | 10 Mbps | 100 | | 100 Mbps | 19 | | 1 Gbps | 4 | | 10 Gbps | 2 | - Root Path Cost is the accumulation of a link's Path Cost and the Path Costs learned from neighboring Switches. - It answers the question: How much does it cost to reach the Root Bridge through this port? - Root Bridge sends out BPDUs with a Root Path Cost value of 0 - Neighbor receives BPDU and adds port's Path Cost to Root Path Cost received - 3. Neighbor sends out BPDUs with new cumulative value as Root Path Cost - 4. Other neighbors down the line keep adding in the same fashion - On each switch, the port where the lowest Root Path Cost was received becomes the *Root Port* - This is the port with the best path to the Root Bridge - What is the Path Cost on each Port? - What is the Root Port on each switch? - OK, we now have selected root ports but we haven't solved the loop problem yet, have we - The links are still active! - Each network segment needs to have only one switch forwarding traffic to and from that segment - Switches then need to identify one *Designated Port* per network segment - The one with the lowest cumulative Root Path Cost to the Root Bridge - Two or more ports in a segment having identical Root Path Costs is possible, which results in a tie condition - All STP decisions are based on the following sequence of conditions: - Lowest Root Bridge ID - Lowest Root Path Cost to Root Bridge - Lowest Sender Bridge ID - Lowest Sender Port ID Which port should be the Designated Port on each segment? #### Blocking a port - Any port that is not elected as either a Root Port, nor a Designated Port is put into the **Blocking** State. - This step effectively breaks the loop and completes the Spanning Tree. #### Designated Ports on each segment (802.1d) Port 2 in Switch C is then put into the Blocking State because it is neither a Root Port nor a Designated Port #### **Spanning Tree Protocol States** - Disabled - Port is shut down - Blocking - Not forwarding frames - Receiving BPDUs - Listening - Not forwarding frames - Sending and receiving BPDUs #### **Spanning Tree Protocol States** - Learning - Not forwarding frames - Sending and receiving BPDUs - Learning new MAC addresses - Forwarding - Forwarding frames - Sending and receiving BPDUs - Learning new MAC addresses ## STP Topology Changes - Switches will recalculate if: - A new switch is introduced - It could be the new Root Bridge! - A switch fails - A link fails #### Root Bridge Placement - Using default STP parameters might result in an undesired situation - Traffic will flow in non-optimal ways - An unstable or slow switch might become the root - You need to plan your assignment of bridge priorities carefully #### Bad Root Bridge Placement #### Good Root Bridge Placement #### Protecting the STP Topology - Some vendors have included features that protect the STP topology: - Root Guard - BPDU Guard - Loop Guard - UDLD - Etc. #### STP Design Guidelines - Enable spanning tree even if you don't have redundant paths - Always plan and set bridge priorities - Make the root choice deterministic - Include an alternative root bridge - If possible, do not accept BPDUs on end user ports - Apply BPDU Guard or similar where available #### 802.1d Convergence Speeds - Moving from the Blocking state to the Forwarding State takes at least 2 x Forward Delay time units (~ 30 secs.) - This can be annoying when connecting end user stations - Some vendors have added enhancements such as PortFast, which will reduce this time to a minimum for edge ports - Never use PortFast or similar in switch-to-switch links - Topology changes typically take 30 seconds too - This can be unacceptable in a production network #### Rapid Spanning Tree (802.1w) - Backwards-compatible with 802.1d - Provides faster convergence - Configure which ports are edge ports - i.e. for end users, not connections to other switches #### Multiple Spanning Tree (802.1s) - Again, backwards-compatible - Includes the fast convergence from RSTP - Also lets you configure multiple trees (with different roots) for different groups of VLANs - So that load is shared between links - Usually not worth the complexity #### Configuration: Cisco - Enabled by default - Select standards-based STP (recommended!) - spanning-tree mode mst - Set bridge priority: - spanning-tree mst 0 priority 12288 - For old switches which can only do PVST: - spanning-tree vlan 1 priority 12288 - Repeat for all vlans! - To <u>enable</u> portfast feature on all <u>access</u> ports: - spanning-tree portfast default #### Configuration: HP - Must enable STP explicitly!! - spanning-tree - Set bridge priority: - spanning-tree priority 3 - Actual priority is $3 \times 4096 = 12288$ - <u>Disable</u> portfast feature on each <u>trunk</u> port: - no spanning-tree <port> auto-edge-port #### Questions? This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.