Campus Network Design Workshop

Layer 2 Engineering – Spanning Tree

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

- When there is more than one path between two switches
- What are the potential problems?

- If there is more than one path between two switches:
 - Forwarding tables become unstable
 - Source MAC addresses are repeatedly seen coming from different ports
 - Switches will broadcast each other's broadcasts
 - All available bandwidth is utilized
 - Switch processors cannot handle the load

 Switches A, B and C broadcast node 1's frame out every port

- But they receive each other's broadcasts, which they need to forward again out every port!
- The broadcasts are amplified, creating a broadcast storm

Good Switching Loops

- But you can take advantage of loops!
 - Redundant paths improve resilience when:
 - A switch fails
 - Wiring breaks
- How to achieve redundancy without creating dangerous traffic loops?

What is a Spanning Tree?

- "Given a connected, undirected graph, a spanning tree of that graph is a subgraph which is a tree and connects all the vertices together".
- A single graph can have many different spanning trees.

Spanning Tree Protocol

 The purpose of the protocol is to have bridges dynamically discover a subset of the topology that is loop-free (a tree) and yet has just enough connectivity so that where physically possible, there is a path between every switch

Spanning Tree Protocol

- Several standard flavors:
 - Traditional Spanning Tree (802.1d)
 - Rapid Spanning Tree or RSTP (802.1w)
 - Multiple Spanning Tree or MSTP (802.1s)
- Old proprietary flavors:
 - Per-VLAN Spanning Tree or PVST (Cisco)

Traditional Spanning Tree (802.1d)

- Switches exchange messages that allow them to compute the Spanning Tree
 - These messages are called BPDUs (Bridge Protocol Data Units)
 - Two types of BPDUs:
 - Configuration
 - Topology Change Notification (TCN)

Traditional Spanning Tree (802.1d)

First Step:

- Decide on a point of reference: the Root Bridge
- The election process is based on the Bridge ID, which is composed of:
 - The Bridge Priority: A two-byte value that is configurable
 - The MAC address: A unique, hardcoded address that cannot be changed.

Root Bridge Selection (802.1d)

- Each switch starts by sending out BPDUs with a Root Bridge ID equal to its own Bridge ID
 - I am the root!
- Received BPDUs are analyzed to see if a <u>lower</u>
 Root Bridge ID is being announced
 - If so, each switch replaces the value of the advertised Root Bridge ID with this new lower ID
- Eventually, they all agree on who the Root Bridge is

Root Bridge Selection (802.1d)

- All switches have the same priority.
- Who is the elected root bridge?

- Now each switch needs to figure out where it is in relation to the Root Bridge
 - Each switch needs to determine its Root Port
 - The key is to find the port with the <u>lowest</u> Root Path
 Cost
 - The cumulative cost of all the links leading to the Root Bridge

- Each link on a switch has a Path Cost
 - Inversely proportional to the link speed
 - e.g. The faster the link, the lower the cost

Link Speed	STP Cost
10 Mbps	100
100 Mbps	19
1 Gbps	4
10 Gbps	2

- Root Path Cost is the accumulation of a link's Path Cost and the Path Costs learned from neighboring Switches.
 - It answers the question: How much does it cost to reach the Root Bridge through this port?

- Root Bridge sends out BPDUs with a Root Path Cost value of 0
- Neighbor receives BPDU and adds port's Path Cost to Root Path Cost received
- 3. Neighbor sends out BPDUs with new cumulative value as Root Path Cost
- 4. Other neighbors down the line keep adding in the same fashion

- On each switch, the port where the lowest Root Path Cost was received becomes the *Root Port*
 - This is the port with the best path to the Root Bridge

- What is the Path Cost on each Port?
- What is the Root Port on each switch?

- OK, we now have selected root ports but we haven't solved the loop problem yet, have we
 - The links are still active!
- Each network segment needs to have only one switch forwarding traffic to and from that segment
- Switches then need to identify one *Designated Port* per network segment
 - The one with the lowest cumulative Root Path Cost to the Root Bridge

- Two or more ports in a segment having identical Root Path Costs is possible, which results in a tie condition
- All STP decisions are based on the following sequence of conditions:
 - Lowest Root Bridge ID
 - Lowest Root Path Cost to Root Bridge
 - Lowest Sender Bridge ID
 - Lowest Sender Port ID

 Which port should be the Designated Port on each segment?

Blocking a port

- Any port that is not elected as either a Root Port, nor a Designated Port is put into the **Blocking** State.
- This step effectively breaks the loop and completes the Spanning Tree.

Designated Ports on each segment (802.1d)

 Port 2 in Switch C is then put into the Blocking State because it is neither a Root Port nor a Designated Port

Spanning Tree Protocol States

- Disabled
 - Port is shut down
- Blocking
 - Not forwarding frames
 - Receiving BPDUs
- Listening
 - Not forwarding frames
 - Sending and receiving BPDUs

Spanning Tree Protocol States

- Learning
 - Not forwarding frames
 - Sending and receiving BPDUs
 - Learning new MAC addresses
- Forwarding
 - Forwarding frames
 - Sending and receiving BPDUs
 - Learning new MAC addresses

STP Topology Changes

- Switches will recalculate if:
 - A new switch is introduced
 - It could be the new Root Bridge!
 - A switch fails
 - A link fails

Root Bridge Placement

- Using default STP parameters might result in an undesired situation
 - Traffic will flow in non-optimal ways
 - An unstable or slow switch might become the root
- You need to plan your assignment of bridge priorities carefully

Bad Root Bridge Placement

Good Root Bridge Placement

Protecting the STP Topology

- Some vendors have included features that protect the STP topology:
 - Root Guard
 - BPDU Guard
 - Loop Guard
 - UDLD
 - Etc.

STP Design Guidelines

- Enable spanning tree even if you don't have redundant paths
- Always plan and set bridge priorities
 - Make the root choice deterministic
 - Include an alternative root bridge
- If possible, do not accept BPDUs on end user ports
 - Apply BPDU Guard or similar where available

802.1d Convergence Speeds

- Moving from the Blocking state to the Forwarding State takes at least 2 x Forward Delay time units (~ 30 secs.)
 - This can be annoying when connecting end user stations
- Some vendors have added enhancements such as PortFast, which will reduce this time to a minimum for edge ports
 - Never use PortFast or similar in switch-to-switch links
- Topology changes typically take 30 seconds too
 - This can be unacceptable in a production network

Rapid Spanning Tree (802.1w)

- Backwards-compatible with 802.1d
- Provides faster convergence
- Configure which ports are edge ports
 - i.e. for end users, not connections to other switches

Multiple Spanning Tree (802.1s)

- Again, backwards-compatible
- Includes the fast convergence from RSTP
- Also lets you configure multiple trees (with different roots) for different groups of VLANs
 - So that load is shared between links
 - Usually not worth the complexity

Configuration: Cisco

- Enabled by default
- Select standards-based STP (recommended!)
 - spanning-tree mode mst
- Set bridge priority:
 - spanning-tree mst 0 priority 12288
- For old switches which can only do PVST:
 - spanning-tree vlan 1 priority 12288
 - Repeat for all vlans!
- To <u>enable</u> portfast feature on all <u>access</u> ports:
 - spanning-tree portfast default

Configuration: HP

- Must enable STP explicitly!!
 - spanning-tree
- Set bridge priority:
 - spanning-tree priority 3
 - Actual priority is $3 \times 4096 = 12288$
- <u>Disable</u> portfast feature on each <u>trunk</u> port:
 - no spanning-tree <port> auto-edge-port

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

