Scalable monitoring tools - a mile-high view

Network Startup Resource Center

www.ws.nsrc.org

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Contents

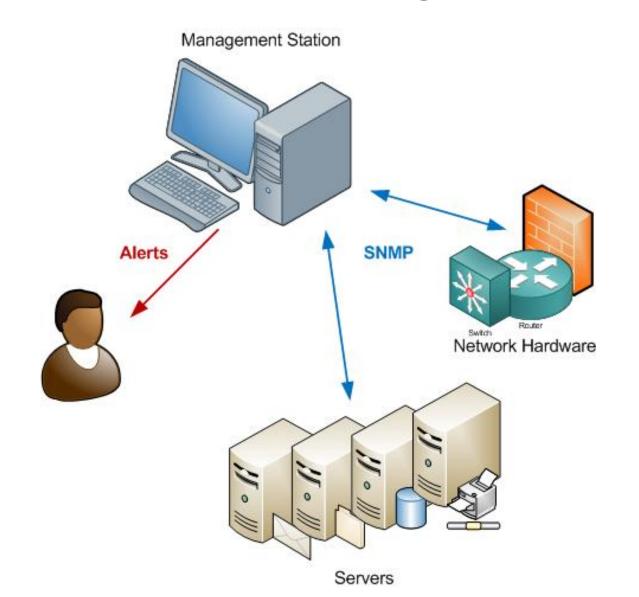
- Problem
- Requirements
- Solutions
- ELK stack
 - ElastiFlow
- TICK stack
- Prometheus
- TimescaleDB
- Kafka

Overview

The Problem(s)

SNMP polling is...

- Slow
- Resource intensive
- Not fine-grained enough


This leads to...

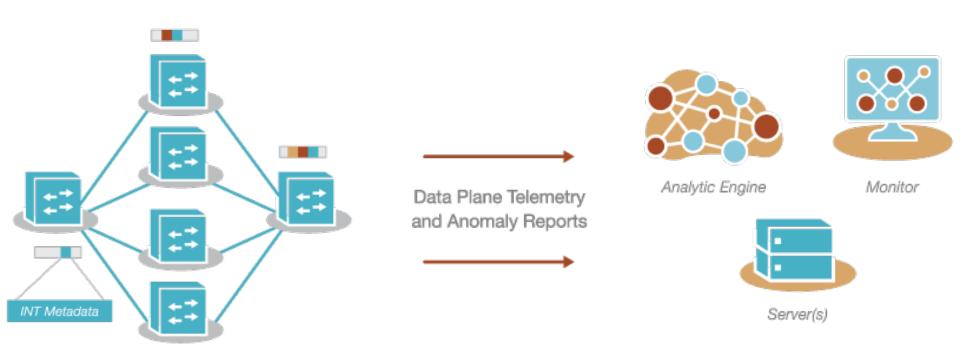
- Slow response to network changes
- Difficult to implement tools on large networks
- Harder to datamine and alert

Classical Polling Model

Requirements

- Timeseries storage
- EVENT LOGS and METRICS
 - Events => syslog, snmp traps, netflow
 - Metrics => counters, gauges
- Searching and Visualisation
- Alerting
- Scale to large volumes of data
- APIs and integration options

Some Solutions


Go from polling to push/passive model

- Network telemetry, not standardized yet
 - Cisco compact Google Protocol Buffers
 - Google Protocol Buffers
 - JSON
- Logging data push solutions
 - Agent-based
 - Collectors and parsers
 - NoSQL database stores
 - Visualization and alerting systems

"Network Telemetry"

ELK vs. TICK

The "Elastic Stack"

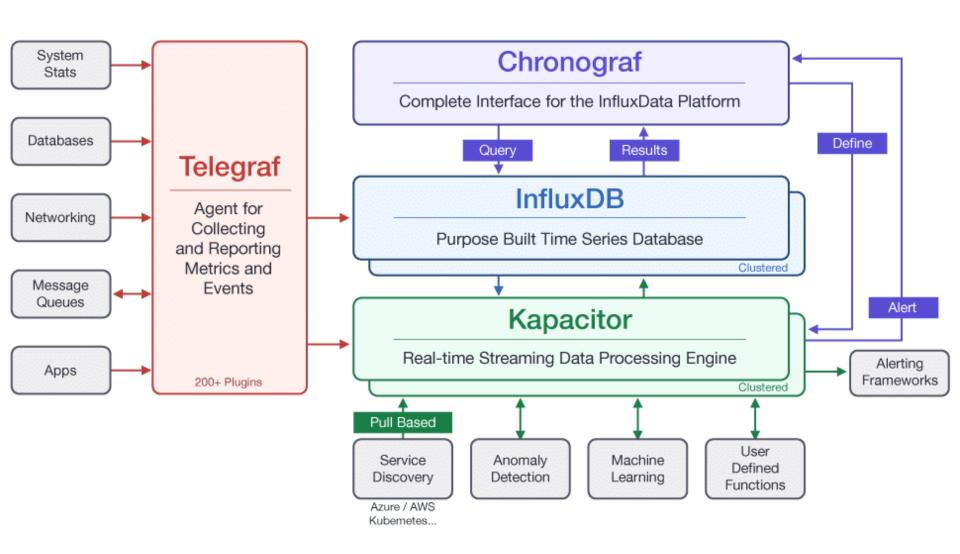
ELK or "Elastic Stack"

- Elasticsearch: NoSQL Database / Search and analytics engine
- Logstash: Log analysis and aggregator
- Kibana: Visualization layer
- Beats Outsourcing some Logstash functions. Some examples include:
 - Filebeat: logging agent on clients sending log data to Logstash or Elasticsearch directly.
 - Metribeat: forwards server metrics
 - Packetbeat: forwards network data

ELK vs. TICK

Data Collection Data
Aggregation
& Processing

Indexing & storage


Analysis & visualization

ELK vs. TICK TICK Stack

TICK:

- Telegraph: Metrics collection. Sends to InfluxDB
- InfluxDB: Time series, NoSQL database
- Chronograf: UI layer. Connects to InfluxDB and Kapacitor.
- Kapacitor: Metrics and events processing and alerting engine.

ELK vs. TICK

ELK and TICK

Comparing the Stacks – Over generalizing!

- ELK for log-based information
- TICK for network and log with alerting

Logstash ← → Telegraph

Elasticsearch ← → InfluxDB

Kibana ← → Chronograf

Plugin to Elasticsearch ← → Kapacitor

Beats

Standards like Google

Protocol Buffers (GPB)

Many other tools...

Kafka and KSQL

- Logstash and Elasticsearch (ELK)
- Telegraph and InfluxDB (TICK)

Prometheus

 Like ELK and Tick but uses http pull to build time-series (NoSQL) data.

Grafana

 Like Kibana, but used for metrics analysis vs. exploring log data.

Many other tools...

Graphite

Time-series, NoSQL DB and logger/grapher

Splunk

 Captures, indexes, correlates real-time date to generate graphs, reports, alerts, dashboards, and visualizations.

TimescaleDB

 Postgres-based, time-series DB, no stack but plugs in

Graphite

What Graphite is and is not.

Graphite does two things:

 $\langle \mathbf{1} \rangle$

Store numeric time-series data

2

Render graphs of this data on demand

Graphite is **not** a collection agent, but it offers the simplest path for getting your measurements into a time-series database. **Feeding your metrics** into Graphite couldn't be any easier.

\$ echo "foo.bar 1 `date +%s`" | nc localhost 2003

Need a collection agent or language bindings? Graphite has one of the largest ecosystems of data integrations and third-party tools.

https://graphiteapp.org/

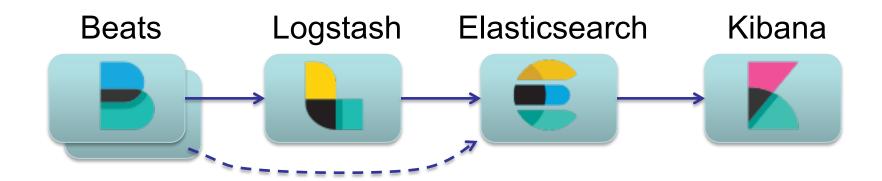
Details

Requirements

- Timeseries storage
- EVENT LOGS and METRICS
 - Events => syslog, snmp traps, netflow
 - Metrics => counters, gauges
- Searching and Visualisation
- Alerting
- Scale to large volumes of data
- APIs and integration options

What's a timeseries?

- A set of (timestamp, value) points
- Need a way to identify all the points belonging to the same timeseries
 - Usually this is done by unique set of "tags"


```
- {metric="ifHCInOctets",
  device="1.2.3.4", ifDescr="Gi0/1"}
```

 Timeseries constantly growing; eventually need to expire old data

The Elastic Stack (ELK)

("The BLEK Stack" doesn't sound as good)

Architecture

- Elasticsearch: JSON document database
 - An Elasticsearch database is called an "index"
 - Built on Lucene free-text search engine
 - Supports replicated and sharded clusters
- Logstash ingests and processes logs
- Kibana provides search UI and graphing
- Beats are lightweight, standalone data collectors

ELK Pros

- Long-standing and widely deployed
 - cloud-hosted services available, or DIY
- Fast free-text searching
- Can be scaled horizontally
- Rich data model, including first-class support for IP addresses
 - Per-field indexing if your data is structured (JSON)

ELK Pros

- Wide range of useful Beats, inc. winlog
- Logstash and Filebeat support Netflow
- Elasticsearch is also a component of many platforms including Wazuh, Security Onion, Graylog, SIEMonster etc.
- Pre-built Kibana dashboards

ELK Cons

- Many features, including alerting, require a commercial licence*
- Huge resource requirements
 - SSD recommended; but index typically 10 times larger than the ingested data
 - Large RAM requirements
 - It's all Java (apart from Beats)

^{*} Check out <u>Open Distro for Elasticsearch</u> (by AWS), and <u>X-pack</u> <u>alternatives</u> such as elastalert and sentinl

ELK Cons

- Not well suited to metrics
 - Expensive to scale up
 - Logstash finally released SNMP input plugin in October 2018
- Elasticsearch: questionable reliability as a primary data store?

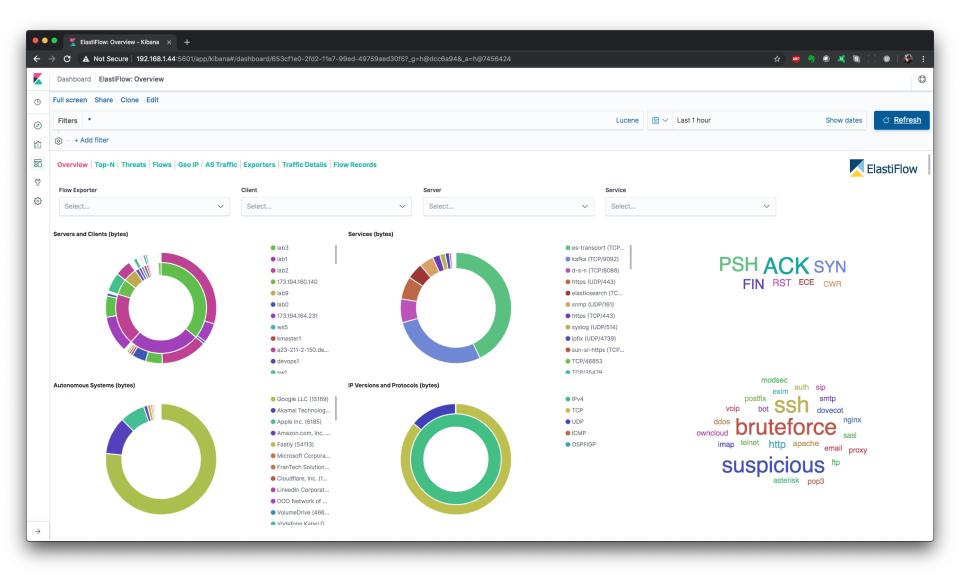
ElastiFlow

ElastiFlow™ provides network flow data collection and visualization using the Elastic Stack (Elasticsearch, Logstash and Kibana). It supports Netflow v5/v9, sFlow and IPFIX flow types (1.x versions support only Netflow v5/v9).

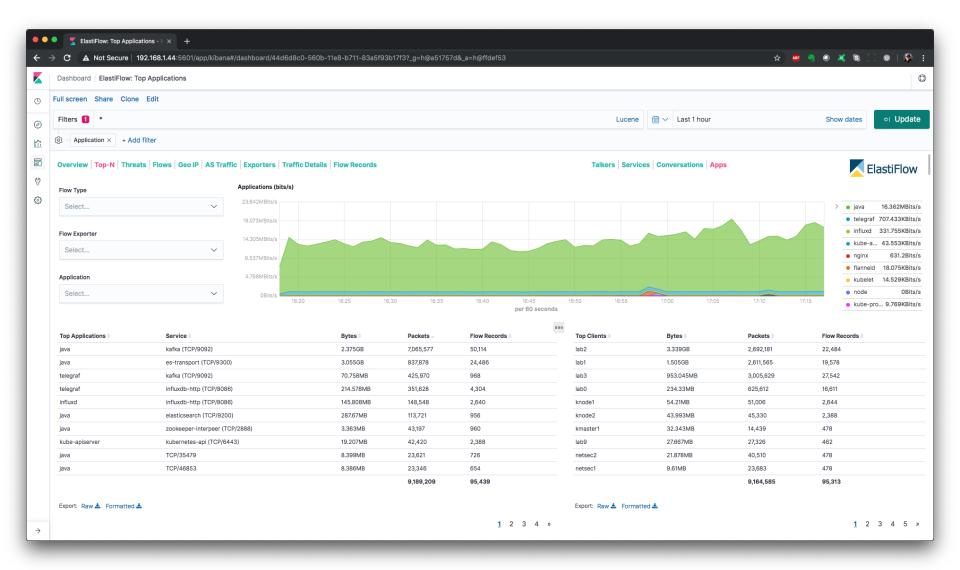
https://github.com/robcowart/elastiflow

Complete instructions for Ubuntu 18.04, Elastic Stack and ElastiFlow:

https://www.catapultsystems.com/blogs/install-elastiflow-on-ubuntu-18-04-part-1/

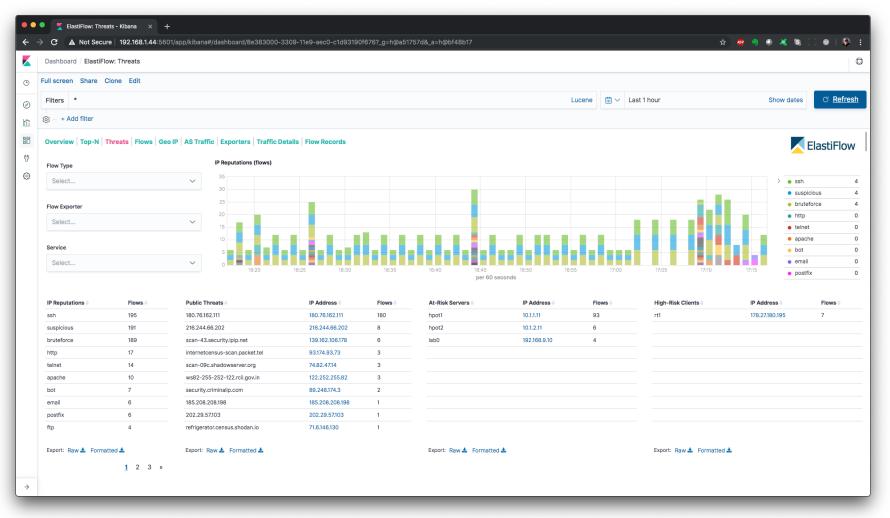


ElastiFlow Dashboards

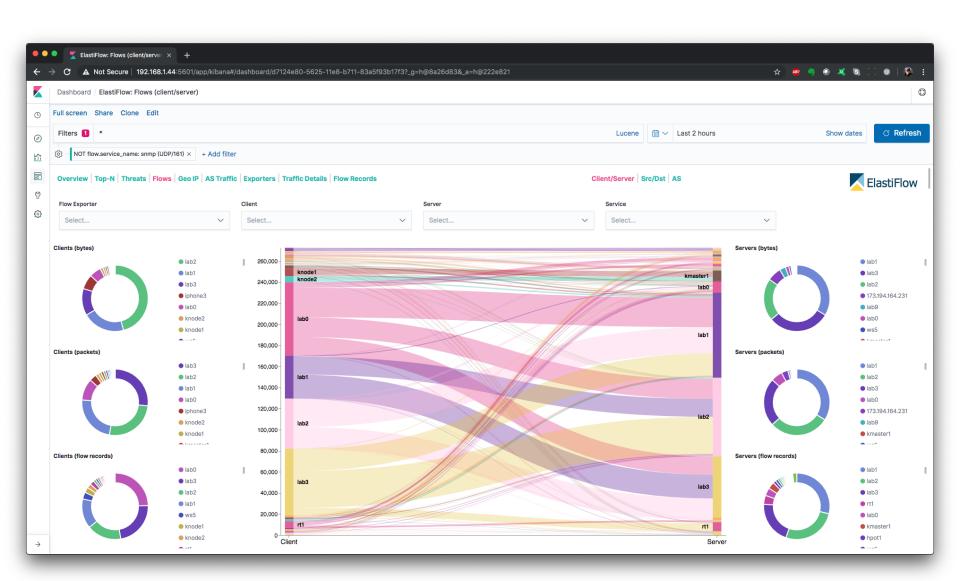


Overview

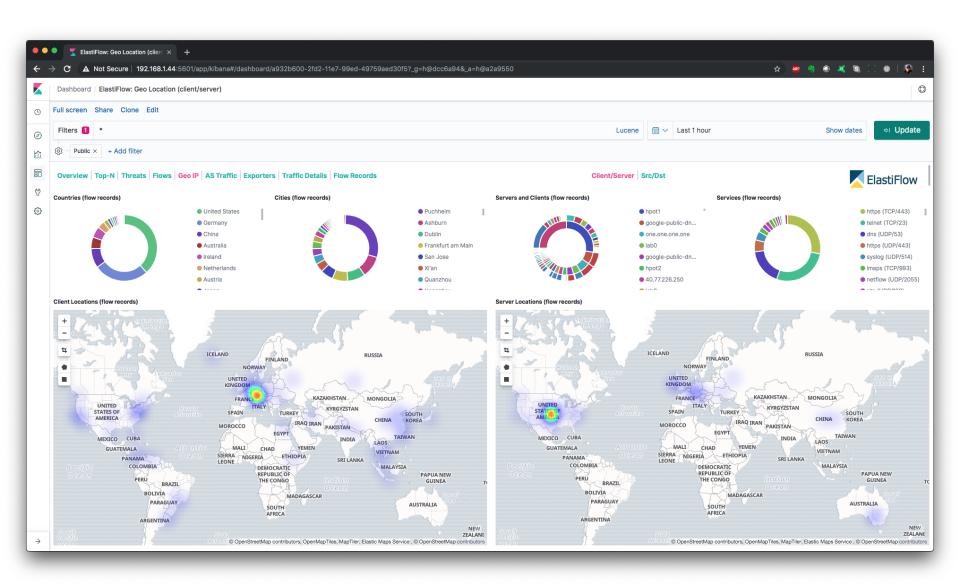
Top-N


There are separate Top-N dashboards for Top Talkers, Services, Conversations and Applications.

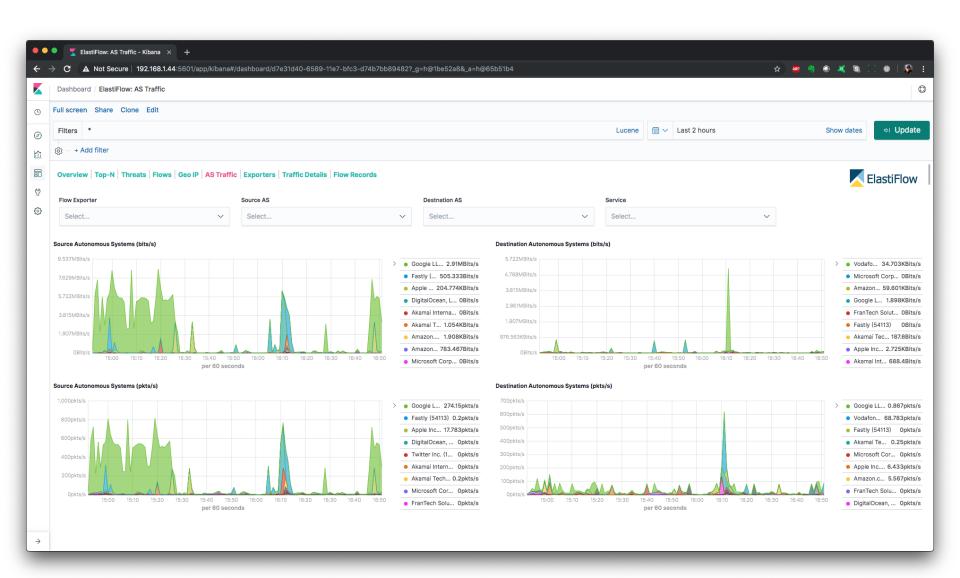
Threats


ElastiFlow™ includes a dictionary of public IP addresses that are known to have a poor reputation. This dictionary is built from many OSINT data sources, normalized to a common taxonomy. The Threats dashboard uses this IP reputation information to highlight three threat/risk types.

- Public Threats Public clients with a poor IP reputation that are reaching private addresses.
- · At-Risk Servers Private Servers that are being reached by clients with a poor IP reputation.
- High-Risk Clients Private clients that are accessing public servers which have a poor reputation.


Flows

There are separate Sankey dashboards for Client/Server, Source/Destination and Autonomous System perspectives. The sankey visualizations are built using the new Vega visualization plugin.


Geo IP

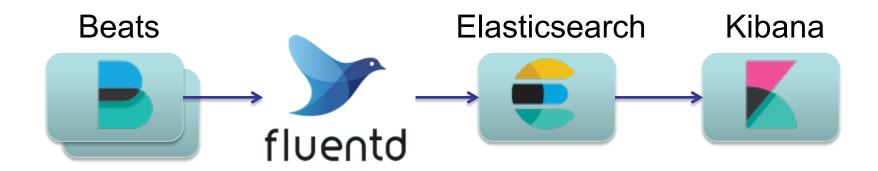
There are separate Geo Location dashboards for Client/Server and Source/Destination perspectives.

AS Traffic

Provides a view of traffic to and from Autonomous Systems (public IP ranges)

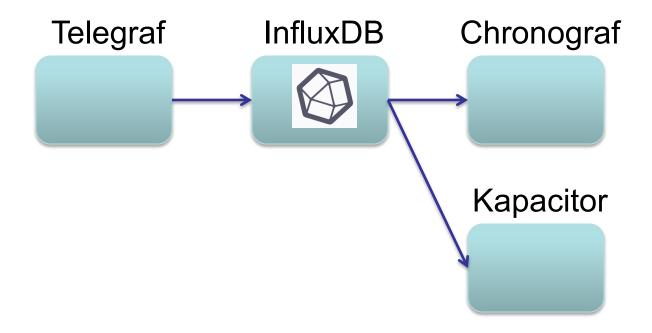
Resources for ElastiFlow

What amount of resources are required to run ElastiFlow:


flows/sec	(v)CPUs	Memory	Disk (30-days)	ES JVM Heap	LS JVM Heap
250	4	24 GB	305 GB	8 GB	4 GB
1000	8	32 GB	1.22 TB	12 GB	4 GB
2500	12	64 GB	3.05 TB	24 GB	6 GB

https://github.com/robcowart/elastiflow/blob/master/INSTALL.md

Modification: the EFK stack


Replace logstash with fluentd and <u>fluent-plugin-beats</u> - avoids a large Java dependency

https://www.slideshare.net/repeatedly/fluentpluginbeats-at-elasticsearch-meetup-14

The TICK Stack

Architecture

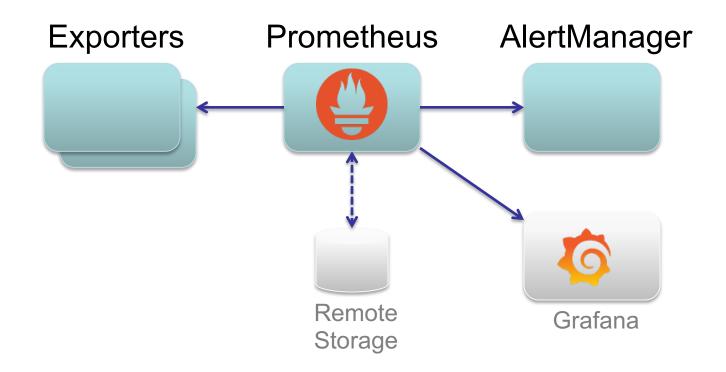
- Telegraf is data collector and processor
 - SNMP polling, system and application metrics, syslog
- InfluxDB is custom time series database
- Chronograf is admin UI and visualisation
 - includes basic syslog browser
- Kapacitor is stream processing and alerting

TICK Pros

- Lightweight binaries (Go); easy to install
- Excellent metric support
 - Columnar storage with high compression
- Stores int, float, text and bool natively
- "SQL-inspired" query language is easy to get started with
- Inline data processing via "continuous queries" and "subscriptions"

TICK Cons

- InfluxQL differences from SQL soon become apparent
 - single and double quotes are very different!
- Kapacitor has yet another language too
 - "TICKScript"
 - Plan to unify in InfluxDB 2.0 ("Flux")
- Alerting hard to set up, and not too intelligent


TICK Cons

- A columnar database isn't really suited to event logs
 - Cannot have two "rows" with the same timestamp (but has nanosecond resolution)
 - Text search is brute-force full column scan
- Maybe unpredictable RAM usage and database corruption (but much improved)
- Horizontal scaling only in commercial cluster product

Prometheus

Architecture

- "Exporters" are simple HTTP endpoints that return metrics when queried
- Prometheus contains polling engine, metric database, threshold detection, and rewriting/downsampling engine
- Alertmanager processes and delivers alerts
 - e.g. can delay and aggregate related alerts
- Basic query UI; use Grafana for dashboards

Architecture: "Pull" monitoring

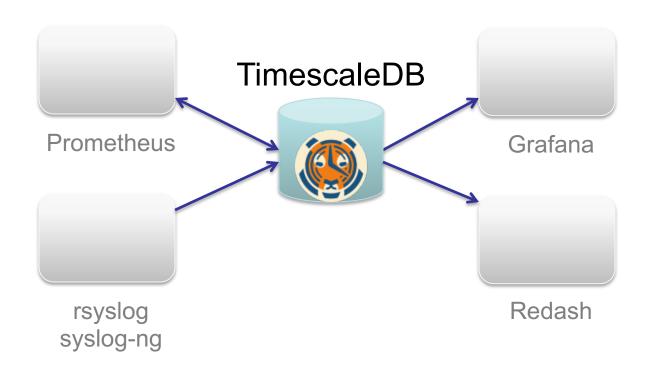
- All polling is performed by prometheus
 - makes periodic outbound HTTP connections
 - This process is called "scraping" the target
- Exporters respond passively on request
 - easy to point additional prometheus servers at them, e.g. for redundancy or testing
 - monitored servers don't need to be told where the monitoring station is

Sample exporters

- node_exporter: local system metrics
- snmp_exporter: poll SNMP devices
- grok_exporter or mtail: generate metrics from parsing log files
- blackbox_exporter: nagios-like service checks
 - can also integrate with real nagios: e.g.nagios_exporter, nrpe_exporter, nagitheus

Prometheus Pros

- Massively scalable and efficient
 - handles millions of timeseries
 - typically less than 2 bytes per data point
- Pretty easy to install
 - static binaries with no dependencies
- Wide ecosystem, easy to extend
 - With node_exporter, just drop custom metrics into a file and you're done!


Prometheus Cons

- Metrics only (one data type: float64)
- Not designed for long-term storage
 - Default is 14 days. You can increase this but must be same for all metrics
 - Can remote-write to other types of database
 - Thanos extension offers long-term S3 storage
- Functional query language is powerful but hard to get to grips with

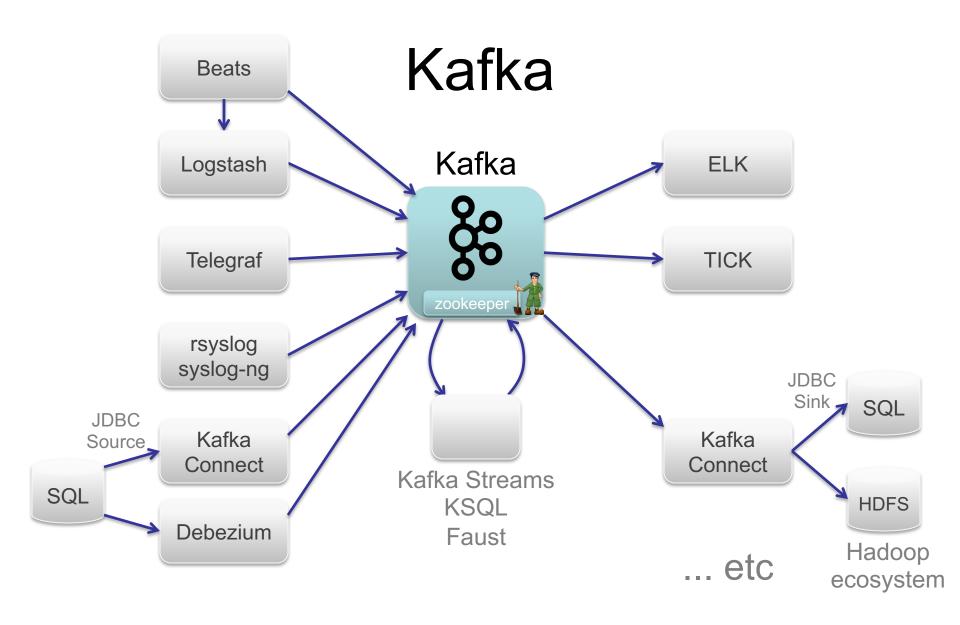
TimescaleDB

Architecture

- TimescaleDB is an extension to Postgres
- Transparently creates table chunks for different time ranges
 - Prevents indexes getting too large
 - Most activity is in most recent chunk
 - Very cheap to expire old chunks
- Adds some aggregation functions too

TimescaleDB Pros

- It's Postgres!
 - Rock-solid data storage
 - Reliable backup and restore, replication
 - Use existing DBA skills
 - Full power of SQL in queries



TimescaleDB Cons

- It's just a database you need to build the stack yourself
 - Creating schemas
 - Getting data in and out
 - Alerting (maybe Grafana's alerting is OK?)
- Fits easily with Prometheus, but not TICK
- Uses substantially more storage space than InfluxDB or Prometheus

Architecture

- Kafka is really just a big queue
- Append messages to "topics"
- Subscribe in "consumer groups"
 - each consumer group receives a copy
- Messages aren't deleted until you say so
 - Consumers can rewind and replay
 - Potentially query in place (e.g. Apache Drill)

Kafka Pros

- System decoupling
 - e.g. use Beats outside of ELK
 - bolt on new alerting/analysis tools
 - write your own custom stream processing
- Massively scalable and reliable
 - Topics can be partitioned and replicated
- Can act as a long-term archive
 - Append-only model is efficient even with HDD

Kafka Cons

- Not a complete monitoring stack
- Not one but two Java services to maintain
- No integrated admin UI, several to choose
- You have to decide the message format
 - Telegraf JSON? Beats JSON? fluentd JSON?
 InfluxDB line protocol? CSV? Avro? ...
- Not well suited to Prometheus "pull" model

Honorable mentions: metrics

netdata

- awesome tool for performance debugging
- configures itself out of the box
- system metrics at 1 second resolution by default, retained for one hour in RAM
- plenty of predefined alerts

Honorable mentions: logs

- fluentd (td-agent)
 - easily extensible in ruby; worth looking at for custom requirements
 - EFK stack: replacing logstash with fluentd
 - fluent-bit for very lightweight install
- loki
 - new project: prometheus-inspired storage of logs, with grafana as user interface

Interesting notes

- Grafana can be used with Prometheus, InfluxDB and Elasticsearch
 - mixed dashboards are possible
- Grafana can do basic alerting by itself
 - maybe you find this easier
- Prometheus remote storage can read and write to InfluxDB and TimescaleDB

Consider when choosing

- All of these (apart from TimescaleDB)
 have esoteric query languages you'll have
 to learn
- Managing large Java apps can be difficult if you don't have the skillz
- How do you feel about separate stacks for metrics and logs?

References

Kafka

https://docs.confluent.io/current/streams-ksql.html

Graphite

https://graphiteapp.org/

InfluxDB

https://www.influxdata.com/

- Logz.io (Information on Elastic Stack, others)
 https://logz.io/
- Prometheus
 https://prometheus.io/

References

Splunk

https://www.splunk.com/

- Cisco Telemetry with Google Protocol Buffers
 https://blogs.cisco.com/sp/streaming-telemetry-with-google-protocol-buffers
- Cisco Model Driven Telemetry
 https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
- Tick Stack on CentOS
 https://www.digitalocean.com/community/tutorials/how-to-monitor-system-metrics-with-the-tick-stack-on-centos-7
- TimescaleDB https://www.timescale.com/

The End!

Questions?

