
Introduction to Ansible

Network Startup Resource Center

Are your servers Pets or Cattle?

Source:
http://www.slideshare.net/gmccance/cern-data-centre-evolution

http://www.slideshare.net/gmccance/cern-data-centre-evolution

What is Ansible?
 A configuration management tool

 Applies changes to your system to bring it to a desired state

 Similar applications include puppet, chef, salt, juju, cfengine

Why choose Ansible?
 Target system requires only sshd and python

 No daemons or agents to install

 Security

 Relies on ssh

 Easy to get started, compared to the others!

Ansible running with cowsay

< TASK: [install /etc/hosts] >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

ok: [pc1.example.com]

Modules
 Ansible “modules” are small pieces of code which perform one

function
 e.g. copy a file, start or stop a daemon

 Most are “idempotent”: running repeatedly has the same effect
as running once
 only makes a change when the system is not already in the desired

state
 Many modules supplied as standard

 https://docs.ansible.com/modules.html

https://docs.ansible.com/modules.html

Invoking modules from shell

$ ansible s1.ws.nsrc.org -m service \
 -a "name=apache2 state=started"

Host or group Module name

Module arguments

Configuring Ansible behaviour
 Tasks are modules called with specific arguments

 Handlers are triggered when something changes

 e.g. restart daemon when a config file is changed

 Roles are re-usable bundles of tasks, handlers and templates

 All defined using YAML

Diversion: YAML
 A way of storing structured data as text
 Conceptually similar to JSON

 String and numeric values
 Lists: ordered sequences
 Hashes: unordered groups of key-value pairs

 String values don't normally need quotes
 Lists and hashes can be nested
 Indentation used to define nesting

YAML list (ordered sequence)
 Single line form

 Multi-line form

[birth, taxes, death]

- birth
- taxes
- death

Space after dash required

YAML hash (key-value pairs)
 Single line form

 Multi-line form

{item: shirt, colour: red, size: 42}

item: shirt
colour: red
size: 42
description: |
 this is a very long multi-line
 text field which is all one value

Space after colon required

Nesting: list of hashes
 Compact

 Multi-line

- {item: shirt, colour: red, size: 42}
- {item: shirt, colour: blue, size: 44}

- item: shirt
 colour: red
 size: 42
- item: shirt
 colour: blue
 size: 44

Note alignment

More complex YAML example

- do: laundry
 items:
 - trousers
 - shirts
- do: polish
 items:
 - shoes
 - buckle
- do: relax
 eat:
 - chocolate
 - chips

A list with 3 items

Each item is a hash (key-value pairs)

Simple value

List value (note indentation)

Ansible playbook

- hosts:
 - pc1.example.com
 - pc3.example.com
 tasks:
 - name: install Apache
 action: apt pkg=apache2 state=present
 - name: ensure Apache is running
 action: service name=apache2 state=started
- hosts: dns_servers
 roles:
 - dns_server
 - ntp

Top level: a list of "plays"

Each play has "hosts" plus "tasks" and/or "roles"

YAML structured module args

- hosts:
 - pc1.example.com
 - pc3.example.com
 tasks:
 - name: install Apache
 apt:
 pkg: apache2
 state: present
 - name: ensure Apache is running
 service:
 name: apache2
 state: started

Now preferred over key=value args

Roles
 A bundle of related tasks/handlers/templates

roles/<rolename>/tasks/main.yml
roles/<rolename>/handlers/main.yml
roles/<rolename>/defaults/main.yml
roles/<rolename>/files/...
roles/<rolename>/templates/...

Recommended way to make re-usable configs

Not all these files need to be present

Tags
 Each role or individual task can be labelled with one or more

"tags"

 When you run a playbook, you can tell it only to run tasks with a
particular tag: -t <tag>

 Lets you selectively run parts of playbooks

Inventory
 Lists all hosts which Ansible may manage

 Defaults to simple "INI" format, but YAML is an option

 Can define groups of hosts

 Default is /etc/ansible/hosts

 Can override in ansible.cfg

 Can override using -i <filename>

Inventory (hosts) example

[dns_servers]
pc1.example.com
pc2.example.com

[misc]
pc3.example.com
pc4.example.com

Note: the same host can be listed under
multiple groups.
Group "all" is created automatically.

Name of group
Hosts in this group

Dynamic Inventory
 Inventory can also be read from other systems using inventory

plugins, e.g.
– AWS EC2 API

– Proxmox API

– Netbox

– ...

Inventory variables
 You can set variables on hosts or groups of hosts

 Variables can make tasks behave differently when applied to
different hosts

 Variables can be inserted into templates

 Some variables control how Ansible connects

Setting host vars
 Directly in the inventory (hosts) file

 In file host_vars/pc2.example.com

[core_servers]
pc1.example.com ansible_connection=local
pc2.example.com

ansible_ssh_host: 10.10.0.241
ansible_ssh_user: root
flurble:
 - foo
 - bar
This is in YAML and is preferred

Setting group vars
 group_vars/dns_servers

 group_vars/all

More YAML
flurble:
 - baz
 - qux

More YAML, applies to every host
Note: host vars take priority over group vars

"Facts"
 Facts are variables containing information collected

automatically about the target host

 Things like what OS is installed, what interfaces it has, what disk
drives it has

 Can be used to adapt roles automatically to the target system

 Gathered every time Ansible connects to a host (unless playbook
has "gather_facts: no")

Showing facts

$ ansible localhost -m setup | less
localhost | success >> {
 "ansible_facts": {
 "ansible_distribution": "Ubuntu",
 "ansible_distribution_version": "22.04",
 "ansible_domain": "ws.nsrc.org",
 "ansible_eth0": {
 "ipv4": {
 "address": "10.10.0.241",
 "netmask": "255.255.255.0",
 "network": "10.10.0.0"
 }, … etc

Invoke the "setup" module

jinja2 template examples
 Insert a variable into text

 Looping over lists

INTERFACES="{{ dhcp_interfaces }}"

search ws.nsrc.org
{% for host in dns_servers %}
nameserver {{ host }}
{% endfor %}

Many other cool features
 Conditionals

 Loops

- action: apt pkg=apache2 state=present
 when: ansible_os_family=='Debian'

- action: apt pkg={{item}} state=present
 with_items:
 - openssh-server
 - acpid
 - rsync
 - telnet

Getting up-to-date Ansible
 "ansible-core" is the main package, and "ansible" adds a number of

plugins (aka "collections")
 Your package manager's version may be old
 For Ubuntu LTS: latest release is in a PPA

apt install software-properties-common
add-apt-repository ppa:ansible/ansible
apt update
apt install ansible

 Standard collection is ansible.builtin
 More collections installable using ansible-galaxy

More info and documentation
 https://docs.ansible.com/

 https://jinja.palletsprojects.com/en/stable/templates/

https://docs.ansible.com/
https://jinja.palletsprojects.com/en/stable/templates/

	Introduction to Ansible
	Are your servers Pets or Cattle?
	What is Ansible?
	Why choose Ansible?
	Ansible running with cowsay
	Modules
	Invoking modules from shell
	Configuring Ansible behaviour
	Diversion: YAML
	YAML list (ordered sequence)
	YAML hash (key-value pairs)
	Nesting: list of hashes
	More complex YAML example
	Ansible playbook
	YAML structured module args
	Roles
	Tags
	Inventory
	Inventory (hosts) example
	Dynamic Inventory
	Inventory variables
	Setting host vars
	Setting group vars
	"Facts"
	Showing facts
	jinja2 template examples
	Many other cool features
	Getting up-to-date Ansible
	More info and documentation

