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Are your servers Pets or Cattle?

Source:
http://www.slideshare.net/gmccance/cern-data-centre-evolution

http://www.slideshare.net/gmccance/cern-data-centre-evolution


What is Ansible?
 A configuration management tool

 Applies changes to your system to bring it to a desired state

 Similar applications include puppet, chef, salt, juju, cfengine



Why choose Ansible?
 Target system requires only sshd and python

 No daemons or agents to install

 Security

 Relies on ssh

 Easy to get started, compared to the others!



Ansible running with cowsay

 ____________________________
< TASK: [install /etc/hosts] >
 ----------------------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

ok: [pc1.example.com]



Modules
 Ansible “modules” are small pieces of code which perform one 

function
 e.g. copy a file, start or stop a daemon

 Most are “idempotent”: running repeatedly has the same effect 
as running once
 only makes a change when the system is not already in the desired 

state
 Many modules supplied as standard

 https://docs.ansible.com/modules.html

https://docs.ansible.com/modules.html


Invoking modules from shell

$ ansible s1.ws.nsrc.org -m service \
    -a "name=apache2 state=started"

Host or group Module name

Module arguments



Configuring Ansible behaviour
 Tasks are modules called with specific arguments

 Handlers are triggered when something changes

 e.g. restart daemon when a config file is changed

 Roles are re-usable bundles of tasks, handlers and templates

 All defined using YAML



Diversion: YAML
 A way of storing structured data as text
 Conceptually similar to JSON

 String and numeric values
 Lists: ordered sequences
 Hashes: unordered groups of key-value pairs

 String values don't normally need quotes
 Lists and hashes can be nested 
 Indentation used to define nesting



YAML list (ordered sequence)
 Single line form

 Multi-line form

[birth, taxes, death]

- birth
- taxes
- death

Space after dash required



YAML hash (key-value pairs)
 Single line form

 Multi-line form

{item: shirt, colour: red, size: 42}

item: shirt
colour: red
size: 42
description: |
  this is a very long multi-line
  text field which is all one value

Space after colon required



Nesting: list of hashes
 Compact

 Multi-line

- {item: shirt, colour: red, size: 42}
- {item: shirt, colour: blue, size: 44}

- item: shirt
  colour: red
  size: 42
- item: shirt
  colour: blue
  size: 44

Note alignment



More complex YAML example

- do: laundry
  items:
    - trousers
    - shirts
- do: polish
  items:
    - shoes
    - buckle
- do: relax
  eat:
    - chocolate
    - chips

A list with 3 items

Each item is a hash (key-value pairs)

Simple value

List value (note indentation)



Ansible playbook

- hosts:
    - pc1.example.com
    - pc3.example.com
  tasks:
    - name: install Apache
      action: apt pkg=apache2 state=present
    - name: ensure Apache is running
      action: service name=apache2 state=started
- hosts: dns_servers
  roles:
    - dns_server
    - ntp

Top level: a list of "plays"

Each play has "hosts" plus "tasks" and/or "roles"



YAML structured module args

- hosts:
    - pc1.example.com
    - pc3.example.com
  tasks:
    - name: install Apache
      apt:
        pkg: apache2
        state: present
    - name: ensure Apache is running
      service:
        name: apache2
        state: started

Now preferred over key=value args



Roles
 A bundle of related tasks/handlers/templates

roles/<rolename>/tasks/main.yml
roles/<rolename>/handlers/main.yml
roles/<rolename>/defaults/main.yml
roles/<rolename>/files/...
roles/<rolename>/templates/...

### Recommended way to make re-usable configs

### Not all these files need to be present



Tags
 Each role or individual task can be labelled with one or more 

"tags"

 When you run a playbook, you can tell it only to run tasks with a 
particular tag: -t <tag>

 Lets you selectively run parts of playbooks



Inventory
 Lists all hosts which Ansible may manage

 Defaults to simple "INI" format, but YAML is an option

 Can define groups of hosts

 Default is /etc/ansible/hosts

 Can override in ansible.cfg

 Can override using -i <filename>



Inventory (hosts) example

[dns_servers]
pc1.example.com
pc2.example.com

[misc]
pc3.example.com
pc4.example.com

# Note: the same host can be listed under
# multiple groups.
# Group "all" is created automatically.

Name of group
Hosts in this group



Dynamic Inventory
 Inventory can also be read from other systems using inventory 

plugins, e.g.
– AWS EC2 API

– Proxmox API

– Netbox

– ...



Inventory variables
 You can set variables on hosts or groups of hosts

 Variables can make tasks behave differently when applied to 
different hosts

 Variables can be inserted into templates

 Some variables control how Ansible connects



Setting host vars
 Directly in the inventory (hosts) file

 In file host_vars/pc2.example.com

[core_servers]
pc1.example.com ansible_connection=local
pc2.example.com

ansible_ssh_host: 10.10.0.241
ansible_ssh_user: root
flurble:
  - foo
  - bar
# This is in YAML and is preferred



Setting group vars
 group_vars/dns_servers

 group_vars/all

# More YAML
flurble:
  - baz
  - qux

# More YAML, applies to every host
# Note: host vars take priority over group vars



"Facts"
 Facts are variables containing information collected 

automatically about the target host

 Things like what OS is installed, what interfaces it has, what disk 
drives it has

 Can be used to adapt roles automatically to the target system

 Gathered every time Ansible connects to a host (unless playbook 
has "gather_facts: no")



Showing facts

$ ansible localhost -m setup | less
localhost | success >> {
    "ansible_facts": {
        "ansible_distribution": "Ubuntu",
        "ansible_distribution_version": "22.04",
        "ansible_domain": "ws.nsrc.org",
        "ansible_eth0": {
            "ipv4": {
                "address": "10.10.0.241",
                "netmask": "255.255.255.0",
                "network": "10.10.0.0"
            },  … etc

Invoke the "setup" module



jinja2 template examples
 Insert a variable into text

 Looping over lists

INTERFACES="{{ dhcp_interfaces }}"

search ws.nsrc.org
{% for host in dns_servers %}
nameserver {{ host }}
{% endfor %}



Many other cool features
 Conditionals

 Loops

- action: apt pkg=apache2 state=present
  when: ansible_os_family=='Debian'

- action: apt pkg={{item}} state=present
  with_items:
    - openssh-server
    - acpid
    - rsync
    - telnet



Getting up-to-date Ansible
 "ansible-core" is the main package, and "ansible" adds a number of 

plugins (aka "collections")
 Your package manager's version may be old
 For Ubuntu LTS: latest release is in a PPA

apt install software-properties-common
add-apt-repository ppa:ansible/ansible
apt update
apt install ansible

 Standard collection is ansible.builtin
 More collections installable using ansible-galaxy 



More info and documentation
 https://docs.ansible.com/

 https://jinja.palletsprojects.com/en/stable/templates/

https://docs.ansible.com/
https://jinja.palletsprojects.com/en/stable/templates/
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