
Ceph: Software Defined Storage



Why Ceph?

• Widely deployed and understood
– Running at huge scale in many environments – e.g. DigitalOcean, CERN

• Many, many features
• Long history

– Started in 2005 by Inktank
– Red Hat purchased in 2014 (now IBM)

• Commercial distributions and support from multiple vendors

https://www.digitalocean.com/blog/why-we-chose-ceph-to-build-block-storage


Features

• Block storage, File storage, Object storage
• Self healing, self balancing
• Very scalable
• Thin provisioning
• Cheap snapshotting and cloning
• Can be designed for high level of fault tolerance
• Off-site mirroring/replication natively supported



Downsides

• Steep learning curve
• Investment…
• Documentation is improving, but many advanced scenarios need 

some third party guidance
• Adding or removing nodes can cause a lot of data movement

– Suggest starting with at least 5 nodes, so only ~20% of data moves

• Without proper operations and monitoring, it can fail



Main concepts

• RADOS - reliable autonomic distributed object store
• CRUSH map
• Placement groups - PGs
• MONs
• OSDs
• Pools



Components

• OSD daemon - stores data on one disk, on behalf of CEPH 
clients

• CEPH MONitor - maintains copy of the cluster map
• CEPH Manager (mgr) - info about PGs, metadata, collect stats
• Pools - logical partitions. Different pools for different types of data, 

replication policy, technology (SSD/HDD)
• Placement Group (pg)  - a pool's data is spread across many 

PGs. PGs are then assigned to OSDs (by CRUSH)
• CRUSH is the algorithm and process for selecting data 

placement, failure domains, etc. based on rules.



Architecture





PGs, OSDs



Assigning PGs to OSDs (cluster map)

osd.0 osd.1 osd.2

0 1 234 6

5 7



Rebalancing - new OSD added

osd.0 osd.1 osd.2

0 1 234 6

5 7

osd.3

3 4

Algorithm moves minimum number of PGs
You need significantly more PGs in a pool than the number of 

OSDs in your cluster, to achieve good balance
(typical starting value: 128)



Where to place a new object?

• The client inputs the pool name and the object ID. For example, 
pool = liverpool and object-id = john.
– CRUSH takes the object ID and hashes it.
– CRUSH calculates the hash modulo of the number of PGs to get a PG ID. 

For example, 58.
– CRUSH calculates the primary OSD corresponding to the PG ID.
– The client gets the pool ID given the pool name. For example, the pool 

"liverpool" is pool number 4.
– The client prepends the pool ID to the PG ID. For example, 4.58.
– The client performs an object operation such as write, read, or delete by 

communicating directly with the Primary OSD in the Acting Set.



OSD replication



OSD states

• "Up" / "Down" = working / not working
• "In" / "Out" = enabled for use / not enabled for use

– When a drive goes "Down", it's automatically made "Out"
– You can manually set a drive to "Out", e.g. for maintenance

• Note that once a drive is Out, Ceph starts moving data around the 
cluster to ensure the target number of replicas is maintained
– You can disable this during maintenance using "noout"

https://www.ibm.com/docs/en/storage-ceph/5?topic=osds-stopping-starting-rebalancing


Erasure Coding Pools



Proxmox and Ceph

• Proxmox has Ceph integrated
– It can talk to Ceph storage
– It can run as a Ceph storage cluster itself

• VMs and storage can run on the same hosts
– a.k.a. "Hyperconverged"
– This can make your cluster smaller and cheaper, but it can also make 

performance problems hard to diagnose
– During healing, large amounts of RAM may be used by OSDs

• allow 4GiB per OSD, in addition to VM memory

– If you have large quantities of file or object data (other than VM images) it 
may be better to build a dedicated storage cluster for that



Ceph Lab


	Ceph: Software Defined Storage
	Why Ceph?
	Features
	Downsides
	Main concepts
	Components
	Architecture
	Slide 8
	PGs, OSDs
	Assigning PGs to OSDs (cluster map)
	Rebalancing - new OSD added
	Where to place a new object?
	OSD replication
	OSD states
	Erasure Coding Pools
	Proxmox and Ceph
	Ceph Lab

