
Cloud Services: An Overview

Virtualization & Cloud Workshop

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International 
license
(http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 31st January 2024



What are "Cloud Services"?

• Ready-made components that you can assemble to build an 
execution environment for your software

• Note that "cloud workloads" can also run on your own hardware 
(where you build equivalent components yourself)
– Packaging up your software in this way can give you flexibility for where 

to deploy it

• Let's briefly review the main options
– Different clouds use different terms for broadly the same services: we'll 

show the AWS terms



Compute Services

• Somewhere to run your software and store your data



Software as a Service (SaaS)

• The whole application is deployed for you and fully managed
• You just need to login (and pay)
• Typically provide web interface and/or APIs
• Examples:

– Office365 / Google Workspace / GMail
– Salesforce
– Telephony and call center platforms
– Other CRM systems, ticketing systems, project management software…



Infrastructure as a Service (IaaS)

• Traditional server workloads: Bare Metal or Virtual Machines
– Amazon name: EC2 (Elastic Compute Cloud), Lightsail
– Each one is called an "instance"

• You need to install and manage the OS and the applications
– Monitoring, patching and security are all your responsibility
– Admin login like a regular server, e.g. SSH, RDP

• You need to choose appropriate dimensioning
– CPUs, RAM, storage

• Different CPU types available (x86_64, ARM)



Containers

• Containers are a way of running processes, isolated from each 
other, on the same server or VM
– Sharing the same kernel, but isolated via cgroups and namespaces
– Much more lightweight than separate VMs, but less robust isolation
– Can share CPU and RAM, but can also have quota limits applied

• OCI containers ("docker containers") are also a way of packaging 
and distributing software
– Container image contains all the OS dependencies it needs (libraries etc)
– Fully reproducible way of running applications in dev, test, production
– Zero install or upgrade: just fire up a fresh container image



Containers (2)

• Container runtime
– Define what containers you want running, and the platform manages them
– ECS (Elastic Container Service), EKS (Elastic Kubernetes Service): 

provision a cluster of underlying EC2 VMs for the containers to run on
– Fargate ("serverless"): you just define how much resource is needed for 

each container, and pay for it while it runs

• Container support infrastructure
– ECR (Elastic Container Registry): where you store the OCI images that 

you've built, so they can be fetched and run
– Tools for Continuous Integration / Continuous Deployment (CI/CD)



Block storage

• In a server or VM, the OS boots from a "hard drive", or something 
which acts like one
– Linear set of fixed-sized blocks (typ. 512 bytes or 4096 bytes)

• Directly attached storage
– very fast (e.g. NVMe), but when cloud instance is shutdown, data is lost

• Network-attached block storage
– Amazon name: EBS (Elastic Block Storage)
– Persists when instance is shutdown, and can be reattached to a different 

instance (but only one at a time)
– Can choose size, storage class, and IOPS performance



Networked file storage

• Application data can also be stored on a remote "file share"
– Traditional examples: NFS, SMB (Samba)
– Amazon name: EFS (Elastic File System)

• Acts like a local filesystem with files and directories
– Open, Read, Write, Seek, Delete etc.

• Multiple instances can have shared read-write access
• Limited access control, may be "all or nothing"
• Not all applications can safely store data on a network filesystem

– e.g. some databases can only provide data integrity on a block store



Object storage

• Objects are stored and retrieved via HTTPS
– Amazon name: S3 (Simple Storage Service)

• Organized into "buckets"
– Access control at the level of buckets and individual objects
– Authenticated access, including direct access from clients
– Per-object metadata

• Objects cannot be partially updated in-place, only replaced
• Different storage classes for speed of access, replication
• Storage capacity unlimited (except by your wallet)



Networking

• Connect your components together
– Amazon name: VPC (Virtual Private Cloud)

• Persistent public IP addresses
– Amazon name: Elastic IP

• Distributing and filtering inbound traffic to servers
– ELB (Elastic Load Balancing)
– API Gateway
– Cloudfront: content delivery network

• Supporting infrastructure: DNS (route 53), Certificates (ACM)



Network warning!

• Network traffic into the cloud (ingress) is free
• Network traffic out of the cloud (egress) is chargeable – and 

expensive!
– Amazon: typically US 9¢ per GB
– Lightsail has inclusive egress allowance, to compete with VPS offerings 

like Digital Ocean, Vultr, Linode
– Wasabi (S3 alternative) has no egress charge, but monthly limit

• Designed to lock your data in
• Designed for you to use in-cloud services rather than out-of-cloud



Managed databases

• Saves you having to install and manage a database for your app
– Fully managed with scheduled backups, multi-site replication etc

• Amazon has many of these!
– RDS (Relational Database Service) is a real cluster of Postgres, Mysql, 

Oracle etc.
– Aurora is an AWS-written SQL database with compatibility layers
– DynamoDB is an AWS noSQL database
– DocumentDB is MongoDB-compatible
– RedShift is a data warehouse (analytics)
– … and more



Drinking the (Kloud) Kool Aid

• If you're going to write your application for a specific cloud then 
you have more options available

• But it may not be able to run anywhere else



Modular components

• Queuing services
– SQS (Simple Queuing Service), Kinesis, Firehose
– MSK (Managed Streaming for Kafka)

• Notifications: SMS, Email, mobile push
– SNS (Simple Notifications Service)

• Machine learning, media transcoding, …
• These are components that you can integrate into your 

applications
– In most cases you have to code to proprietary APIs (except MSK)



Functions as a Service, a.k.a. "Serverless"

• Upload pieces of code which run on demand
– Amazon name: Lambda, Fargate
– Can be triggered directly by HTTP (API Gateway), S3 bucket upload, 

queued messages in SQS, …

• You do not pay while they are not executing: "scale to zero"
• They auto-scale up to meet incoming load: "scale to infinity"

– No need to provision or size EC2 instances

• Build connected sequences of tasks
– Amazon name: Step functions, SWF (Simple Workflow - older)



Benefits and costs

• Benefit: all scaling and OS management overhead is gone
• Benefit: using battle-tested, managed infrastructure

– Less stuff for you to manage
– You can focus on your own business requirements

• Cost: you are strongly tied to the cloud – or one cloud
– There are tools like "serverless framework" which can deploy to multiple 

clouds, but you'll likely be using cloud-specific APIs in your code

• Total cost for a given amount of compute resource is higher



Application Lifecycle Management



Deployment tools, or "Infrastructure as code"

• You want to reproduce what you have in development, test and 
production – the full stack of connected components
– More or less identical, differing in scale and access controls

• Deploy automatically from a well-defined template
– Amazon specific: Cloud Formation
– Generic/multi-cloud: Terraform (OpenTofu)
– Containers: Kubernetes (+ kustomize, helm, jsonnet, cue…)

• Template can be tested and stored in version control, just like 
code



CI/CD

• Mainly applicable when you are developing your own software
• Continuous Integration (CI): automatically run tests whenever 

changes are checked in to version control system
• Continuous Deployment (CD): automatically deploy to production 

when tests pass
– There are risk reduction strategies, e.g. "canaries"

• Many tools and platforms available
– eg. Github Actions, Gitlab, Travis, CircleCI, Jenkins, TeamCity, ArgoCD…
– Some are cloud services, some are self hosted, and some can do either



Logging and monitoring

• You need to know both your resource utilization and how well 
your application is performing

• Clouds typically provide some sort of dashboard for monitoring 
CPU usage, storage usage etc

• Collect logs from your application
– Amazon: CloudWatch, X-Ray, CloudTrail

• Collect metrics (measurements) from your application
– Amazon: Cloudwatch Metrics, Managed Grafana

• Bills and detailed usage records



Dealing with failures

• Clouds are built of real physical servers, and they DO fail
• Entire data centers can fail (power, storms, fires, fat fingers…)
• AWS is divided into geographic Regions, and each region is 

formed of locally connected data centers called Availability Zones
– Regions are independent of each other (mostly)
– Availability Zones are closely connected (e.g. EBS volumes are replicated 

between AZs, and an instance in any AZ can access any EBS volume)
– Object storage and database replicas can be spread over AZs
– Inter-AZ traffic is faster and cheaper than Inter-Region traffic



Dealing with failures (2)

• It is up to YOU to architect a system which can cope with failures 
in a way that works for your use case, e.g.
– Run multiple instances behind an ELB
– Run instances in different AZs
– Repeatedly launch instances from templates (no long-lived instances)
– Have a complete replica in a different region, and be prepared to swing 

traffic to it (e.g. via DNS)

• You should continuously test your ability to cope with failures
– Netflix have a tool called "Chaos Monkey"
– AWS have a tool called "Fault Injection Service"



Security

• Cloud does not make your OS or your application any more 
secure than running it locally
– You still have to do OS and application patching

• Cloud resources are accessible over the Internet, by design
• You must be very careful to ensure correct access policies are 

applied to every resource – and frequently audit them
– S3 buckets with "read all" permissions have caused many data leaks
– Many more subtle errors are possible
– "Doing it right" is hard, and programmers/admins are tempted to do 

something simple and insecure rather than learning the right way



Security (2)

• Equally scary, the management APIs are also accessible over the 
Internet

• Any compromised admin account could not only read and write 
any resource, they could destroy the whole account

• Protection of admin credentials is critical (2FA)
• Staff need special training, e.g.

– Don't generate long-lived API keys on admin accounts
– Don't check in credentials to source version control
– Consider completely separate cloud accounts for dev, test and production



Security (3)

• Not surprisingly, security is most easily managed when working 
within the cloud, rather than outside it
– For example, EC2 instances or Lambda functions can assume "roles" 

which in turn give them rights to access other AWS resources, which you 
define in "policies"

– This means you don't need to hard-code credentials within the 
applications themselves, as long as you use these mechanisms correctly

• There are features for encrypting data at rest and in transit, and 
managing the keys (Amazon: KMS)

• Learning all this is a big investment, but essential



Cost control

• With your own servers, you pay a fixed cost for hosting, until you 
run out of capacity and need to install more

• With public cloud, you pay for everything you've turned on
• If you turn something on and forget to turn it off, you keep paying 

indefinitely
• Very easy to end up with huge bills
• Tag every single resource with its responsible business owner, 

and make the costs come out of that owner's budget
• Frequent audits, and switch off anything unknown



Summary

• There are many pieces to learn, and choices to make
• Which you use depends on whether you are deploying already-

written applications, or writing your own software
• We will look at some of them in more detail later in this workshop


	Cloud Services: An Overview
	What are "Cloud Services"?
	Compute Services
	Software as a Service (SaaS)
	Infrastructure as a Service (IaaS)
	Containers
	Containers (2)
	Block storage
	Networked file storage
	Object storage
	Networking
	Network warning!
	Managed databases
	Drinking the (Kloud) Kool Aid
	Modular components
	Functions as a Service, a.k.a. "Serverless"
	Benefits and costs
	Application Lifecycle Management
	Deployment tools, or "Infrastructure as code"
	CI/CD
	Logging and monitoring
	Dealing with failures
	Dealing with failures (2)
	Security
	Security (2)
	Security (3)
	Cost control
	Summary

