Cloud Services: An Overview

Virtualization & Cloud Workshop

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International
license
(http://creativecommons.org/licenses/by-nc/4.0/)

UNIVERSITY OF OREGON NSRC

Last updated 31+t January 2024 Network Startup Resource Center

O




What are "Cloud Services"?

* Ready-made components that you can assemble to build an
execution environment for your software

* Note that "cloud workloads" can also run on your own hardware
(where you build equivalent components yourself)
— Packaging up your software in this way can give you flexibility for where
to deploy it
* Let's briefly review the main options

— Different clouds use different terms for broadly the same services: we'll
show the AWS terms

0 UNIVERSITY OF OREGON NSRC




Compute Services

* Somewhere to run your software and store your data

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Software as a Service (SaaS)

The whole application is deployed for you and fully managed
You just need to login (and pay)
Typically provide web interface and/or APls

Examples:

— Office365 / Google Workspace / GMail

— Salesforce

— Telephony and call center platforms

— Other CRM systems, ticketing systems, project management software...

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Infrastructure as a Service (laaS)

Traditional server workloads: Bare Metal or Virtual Machines
— Amazon name: EC2 (Elastic Compute Cloud), Lightsail
— Each one is called an "instance”

You need to install and manage the OS and the applications
— Monitoring, patching and security are all your responsibility
— Admin login like a regular server, e.g. SSH, RDP

You need to choose appropriate dimensioning
— CPUs, RAM, storage

Different CPU types available (x86 64, ARM)

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Containers

* Containers are a way of running processes, isolated from each
other, on the same server or VM
— Sharing the same kernel, but isolated via cgroups and namespaces
— Much more lightweight than separate VMs, but less robust isolation
— Can share CPU and RAM, but can also have quota limits applied

* OCI containers ("docker containers") are also a way of packaging
and distributing software
— Container image contains all the OS dependencies it needs (libraries etc)
— Fully reproducible way of running applications in dev, test, production
— Zero install or upgrade: just fire up a fresh container image

0 UNIVERSITY OF OREGON NSRC




Containers (2)

* Container runtime

— Define what containers you want running, and the platform manages them

— ECS (Elastic Container Service), EKS (Elastic Kubernetes Service):
provision a cluster of underlying EC2 VMs for the containers to run on

— Fargate ("serverless"): you just define how much resource is needed for
each container, and pay for it while it runs
* Container support infrastructure

— ECR (Elastic Container Registry): where you store the OCI images that
you've built, so they can be fetched and run

— Tools for Continuous Integration / Continuous Deployment (CI/CD)

0 UNIVERSITY OF OREGON NSRC




Block storage

* In a server or VM, the OS boots from a "hard drive", or something
which acts like one
— Linear set of fixed-sized blocks (typ. 512 bytes or 4096 bytes)

* Directly attached storage
— very fast (e.g. NVMe), but when cloud instance is shutdown, data is lost

* Network-attached block storage
— Amazon name: EBS (Elastic Block Storage)

— Persists when instance is shutdown, and can be reattached to a different
instance (but only one at a time)

— Can choose size, storage class, and IOPS performance

0 UNIVERSITY OF OREGON NSRC




O

Networked file storage

Application data can also be stored on a remote "file share"
— Traditional examples: NFS, SMB (Samba)
— Amazon name: EFS (Elastic File System)

Acts like a local filesystem with files and directories
— Open, Read, Write, Seek, Delete etc.

Multiple instances can have shared read-write access
Limited access control, may be "all or nothing"

Not all applications can safely store data on a network filesystem
— e.g. some databases can only provide data integrity on a block store

UNIVERSITY OF OREGON NSRC




O

Object storage

Objects are stored and retrieved via HTTPS
— Amazon name: S3 (Simple Storage Service)

Organized into "buckets"

— Access control at the level of buckets and individual objects
— Authenticated access, including direct access from clients
— Per-object metadata

Objects cannot be partially updated in-place, only replaced
Different storage classes for speed of access, replication
Storage capacity unlimited (except by your wallet)

UNIVERSITY OF OREGON NSRC




Networking

Connect your components together

— Amazon name: VPC (Virtual Private Cloud)
Persistent public IP addresses

— Amazon name: Elastic IP

Distributing and filtering inbound traffic to servers
— ELB (Elastic Load Balancing)

— API Gateway

— Cloudfront: content delivery network

Supporting infrastructure: DNS (route 53), Certificates (ACM)

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




O

Network warning!

Network traffic into the cloud (ingress) is free

Network traffic out of the cloud (egress) is chargeable — and
expensive!
— Amazon: typically US 9¢ per GB

— Lightsail has inclusive egress allowance, to compete with VPS offerings
like Digital Ocean, Vultr, Linode

— Wasabi (S3 alternative) has no egress charge, but monthly limit
Designed to lock your data in
Designed for you to use in-cloud services rather than out-of-cloud

UNIVERSITY OF OREGON NSRC




Managed databases

* Saves you having to install and manage a database for your app
— Fully managed with scheduled backups, multi-site replication etc

* Amazon has many of these!

— RDS (Relational Database Service) is a real cluster of Postgres, Mysq|,
Oracle etc.

— Aurora is an AWS-written SQL database with compatibility layers
— DynamoDB is an AWS noSQL database

— DocumentDB is MongoDB-compatible

— RedShift is a data warehouse (analytics)

— ... and more

0 UNIVERSITY OF OREGON NSRC




Drinking the (Kloud) Kool Aid

* If you're going to write your application for a specific cloud then
you have more options available

* But it may not be able to run anywhere else

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




O

Modular components

Queuing services

— SQS (Simple Queuing Service), Kinesis, Firehose

— MSK (Managed Streaming for Kafka)

Notifications: SMS, Email, mobile push

— SNS (Simple Notifications Service)

Machine learning, media transcoding, ...

These are components that you can integrate into your

applications
— In most cases you have to code to proprietary APls (except MSK)

UNIVERSITY OF OREGON NSRC




O

Functions as a Service, a.k.a. "Serverless'

Upload pieces of code which run on demand

— Amazon name: Lambda, Fargate

— Can be triggered directly by HTTP (API Gateway), S3 bucket upload,
queued messages in SQS, ...

You do not pay while they are not executing: "scale to zero”

They auto-scale up to meet incoming load: "scale to infinity"
— No need to provision or size EC2 instances

Build connected sequences of tasks
— Amazon name: Step functions, SWF (Simple Workflow - older)

UNIVERSITY OF OREGON NSRC




O

Benefits and costs

Benefit: all scaling and OS management overhead is gone

Benefit: using battle-tested, managed infrastructure
— Less stuff for you to manage
— You can focus on your own business requirements

Cost: you are strongly tied to the cloud — or one cloud

— There are tools like "serverless framework" which can deploy to multiple
clouds, but you'll likely be using cloud-specific APls in your code

Total cost for a given amount of compute resource is higher

UNIVERSITY OF OREGON NSRC




Application Lifecycle Management

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Deployment tools, or "Infrastructure as code”

* You want to reproduce what you have in development, test and
production — the full stack of connected components
— More or less identical, differing in scale and access controls
* Deploy automatically from a well-defined template
— Amazon specific: Cloud Formation
— Generic/multi-cloud: Terraform (OpenTofu)
— Containers: Kubernetes (+ kustomize, helm, jsonnet, cue...)

* Template can be tested and stored in version control, just like
code

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Cl/ICD

* Mainly applicable when you are developing your own software

* Continuous Integration (Cl): automatically run tests whenever
changes are checked in to version control system

* Continuous Deployment (CD): automatically deploy to production
when tests pass
— There are risk reduction strategies, e.g. "canaries”

* Many tools and platforms available
— eg. Github Actions, Gitlab, Travis, CircleCl, Jenkins, TeamCity, ArgoCD...
— Some are cloud services, some are self hosted, and some can do either

0 UNIVERSITY OF OREGON NSRC




Logging and monitoring

* You need to know both your resource utilization and how well
your application is performing

* Clouds typically provide some sort of dashboard for monitoring
CPU usage, storage usage etc

* Collect logs from your application
— Amazon: CloudWatch, X-Ray, CloudTrail

* Collect metrics (measurements) from your application
— Amazon: Cloudwatch Metrics, Managed Grafana

* Bills and detailed usage records

0 UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee




Dealing with failures

* Clouds are built of real physical servers, and they DO fail

* Entire data centers can fail (power, storms, fires, fat fingers...)

* AWS is divided into geographic Regions, and each region is
formed of locally connected data centers called Availability Zones

— Regions are independent of each other (mostly)

— Availability Zones are closely connected (e.g. EBS volumes are replicated
between AZs, and an instance in any AZ can access any EBS volume)

— Object storage and database replicas can be spread over AZs
— Inter-AZ traffic is faster and cheaper than Inter-Region traffic

0 UNIVERSITY OF OREGON NSRC




Dealing with failures (2)

* ltis up to YOU to architect a system which can cope with failures
in a way that works for your use case, e.qg.
— Run multiple instances behind an ELB
— Run instances in different AZs
— Repeatedly launch instances from templates (no long-lived instances)
— Have a complete replica in a different region, and be prepared to swing
traffic to it (e.g. via DNS)
* You should continuously test your ability to cope with failures
— Netflix have a tool called "Chaos Monkey"
— AWS have a tool called "Fault Injection Service"

0 UNIVERSITY OF OREGON NSRC




Security

* Cloud does not make your OS or your application any more
secure than running it locally
— You still have to do OS and application patching

* Cloud resources are accessible over the Internet, by design

* You must be very careful to ensure correct access policies are
applied to every resource — and frequently audit them
— S3 buckets with "read all" permissions have caused many data leaks
— Many more subtle errors are possible

— "Doing it right" is hard, and programmers/admins are tempted to do
something simple and insecure rather than learning the right way

0 UNIVERSITY OF OREGON NSRC




O

Security (2)

Equally scary, the management APIs are also accessible over the
Internet

Any compromised admin account could not only read and write
any resource, they could destroy the whole account

Protection of admin credentials is critical (2FA)

Staff need special training, e.g.

— Don't generate long-lived API| keys on admin accounts

— Don't check in credentials to source version control

— Consider completely separate cloud accounts for dev, test and production

UNIVERSITY OF OREGON NSRC




Security (3)

* Not surprisingly, security is most easily managed when working
within the cloud, rather than outside it

— For example, EC2 instances or Lambda functions can assume "roles"
which in turn give them rights to access other AWS resources, which you
define in "policies"

— This means you don't need to hard-code credentials within the
applications themselves, as long as you use these mechanisms correctly

* There are features for encrypting data at rest and in transit, and
managing the keys (Amazon: KMS)

* Learning all this is a big investment, but essential

0 UNIVERSITY OF OREGON NSRC




O

Cost control

With your own servers, you pay a fixed cost for hosting, until you
run out of capacity and need to install more

With public cloud, you pay for everything you've turned on

If you turn something on and forget to turn it off, you keep paying
indefinitely

Very easy to end up with huge bills

Tag every single resource with its responsible business owner,
and make the costs come out of that owner's budget

Frequent audits, and switch off anything unknown

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee




Summary

* There are many pieces to learn, and choices to make

* Which you use depends on whether you are deploying already-
written applications, or writing your own software

* We will look at some of them in more detail later in this workshop

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




	Cloud Services: An Overview
	What are "Cloud Services"?
	Compute Services
	Software as a Service (SaaS)
	Infrastructure as a Service (IaaS)
	Containers
	Containers (2)
	Block storage
	Networked file storage
	Object storage
	Networking
	Network warning!
	Managed databases
	Drinking the (Kloud) Kool Aid
	Modular components
	Functions as a Service, a.k.a. "Serverless"
	Benefits and costs
	Application Lifecycle Management
	Deployment tools, or "Infrastructure as code"
	CI/CD
	Logging and monitoring
	Dealing with failures
	Dealing with failures (2)
	Security
	Security (2)
	Security (3)
	Cost control
	Summary

