
Containers



What are containers?

• A way of isolating processes from each other
– Processes in one container cannot see processes in another container

• Each container has its own filesystem
– which is just a subdirectory in the host filesystem

• Each container can have its own network stack and hostname
• Uses modern kernel isolation mechanisms

– (cgroups, chroot, PID namespaces, network namespaces… the details 
aren't important)
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Advantages of containers

• There is only one kernel and OS running
• As a result, containers are very lightweight

– It is possible to run hundreds of containers on a single host

• Containers share the host's RAM
– although you can apply per-container RAM and CPU limits too

• Much lower overhead than full virtualization
• Can be an alternative to VMs for some use cases
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Disadvantages of containers

• Container uses the host's kernel
– You cannot have a Windows container running on a Linux host; you need 

full virtualization for that
– However, container has its own complete filesystem
– Can have a Fedora container running on an Ubuntu host, for example

• No live migration
– Theoretically possible with "CRIU", but there are so many limitations it 

almost never works
– Container stop/start is very quick anyway



Container security

• It ought to be hard to break out of a container
• But it's easier than breaking out of a VM
• So if you're running untrusted workloads (e.g. managed by 

external users) then safer to stick to VMs
• Another option is to run a number of containers inside a single 

VM



Container security options

• Unprivileged containers map user IDs to safe ones
– e.g. uid 0 (root) inside container is uid 100000 outside the container
– very good security; if a user breaks out, very little damage possible
– container can't do things like mount block devices

• Nesting relaxes some constraints to allow containers in 
containers
– not a major issue when used with unprivileged containers

• Privileged containers run same uids, e.g. root is root
– dangerous: root in container can mess with the host.

• Privileged + Nesting = very dangerous indeed



Container management

• You need some software to manage containers
– create, start, stop, etc

• These fall into two broad categories



Two types of container platform

• "System containers" (lxc, lxd / incus, OpenVZ, …)
– Container looks like a VM, and is managed like a VM
– Container filesystem has a complete OS image
– Connect to it via SSH, install multiple software packages, etc

• "Application containers" (docker, podman, kubernetes)
– An application is bundled with all its dependencies in one big image
– Container starts from a copy of this image
– Generally one container per application
– You don't manage or upgrade the container; you throw it away and 

recreate it from an updated image



Proxmox CT

• Proxmox system containers
• Uses lxc behind the scenes
• Creates a block storage volume for each container

– Advantage: can use any storage, including Linstor or Ceph
– Disadvantage: fixed storage size

• Provides some downloadable, ready-to-run images
• Manage them alongside your VMs in the same UI
• These containers run directly on your Proxmox host and therefore 

shouldn't be used for untrusted workloads



incus (fork of lxd)

• Lightweight, can easily be installed inside a VM
– for macOS see colima

• Powerful, primarily CLI/API based
– amenable to scripting
– remotely controllable, CLI uses the API

• Many different ready-to-run images provided
• Can use host ZFS or btrfs for efficient snapshots and replication
• Can also run VMs and make the tea

https://github.com/abiosoft/colima


Proxmox CT lab
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