
Containers



What are containers?

• A way of isolating processes from each other
– Processes in one container cannot see processes in another container

• Each container has its own filesystem
– which is just a subdirectory in the host filesystem

• Each container can have its own network stack and hostname
• Uses modern kernel isolation mechanisms

– (cgroups, chroot, PID namespaces, network namespaces… the details 
aren't important)



SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

Kernel

Recap: normal system ("bare metal") A
p

p
lica

tio
n

s
O

S



SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

device
driver

device
driver

device
driver

device
driver

filesystem
network

stack

Kernel

Container 2Container 1

O
S

A
p

p
lica

tio
n

s

user
process

user
process

user
process

C
ontainer

M
anagem

ent

Libraries Libraries

Containers



Advantages of containers

• There is only one kernel and OS running
• As a result, containers are very lightweight

– It is possible to run hundreds of containers on a single host

• Containers share the host's RAM
– although you can apply per-container RAM and CPU limits too

• Much lower overhead than full virtualization
• Can be an alternative to VMs for some use cases



SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

HYPERVISOR

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

Kernel

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

Kernel

emulated
hardware

Virtual machine 1 Virtual machine 2

Compare: Virtual Machines

G
uest O

S
's

A
pplications

H
ost O

S



Disadvantages of containers

• Container uses the host's kernel
– You cannot have a Windows container running on a Linux host; you need 

full virtualization for that
– However, container has its own complete filesystem
– Can have a Fedora container running on an Ubuntu host, for example

• No live migration
– Theoretically possible with "CRIU", but there are so many limitations it 

almost never works
– Container stop/start is very quick anyway



Container security

• It ought to be hard to break out of a container
• But it's easier than breaking out of a VM
• So if you're running untrusted workloads (e.g. managed by 

external users) then safer to stick to VMs
• Another option is to run a number of containers inside a single 

VM



Container security options

• Unprivileged containers map user IDs to safe ones
– e.g. uid 0 (root) inside container is uid 100000 outside the container
– very good security; if a user breaks out, very little damage possible
– container can't do things like mount block devices

• Nesting relaxes some constraints to allow containers in 
containers
– not a major issue when used with unprivileged containers

• Privileged containers run same uids, e.g. root is root
– dangerous: root in container can mess with the host.

• Privileged + Nesting = very dangerous indeed



Container management

• You need some software to manage containers
– create, start, stop, etc

• These fall into two broad categories



Two types of container platform

• "System containers" (lxc, lxd / incus, OpenVZ, …)
– Container looks like a VM, and is managed like a VM
– Container filesystem has a complete OS image
– Connect to it via SSH, install multiple software packages, etc

• "Application containers" (docker, podman, kubernetes)
– An application is bundled with all its dependencies in one big image
– Container starts from a copy of this image
– Generally one container per application
– You don't manage or upgrade the container; you throw it away and 

recreate it from an updated image



Proxmox CT

• Proxmox system containers
• Uses lxc behind the scenes
• Creates a block storage volume for each container

– Advantage: can use any storage, including Linstor or Ceph
– Disadvantage: fixed storage size

• Provides some downloadable, ready-to-run images
• Manage them alongside your VMs in the same UI
• These containers run directly on your Proxmox host and therefore 

shouldn't be used for untrusted workloads



incus (fork of lxd)

• Lightweight, can easily be installed inside a VM
– for macOS see colima

• Powerful, primarily CLI/API based
– amenable to scripting
– remotely controllable, CLI uses the API

• Many different ready-to-run images provided
• Can use host ZFS or btrfs for efficient snapshots and replication
• Can also run VMs and make the tea

https://github.com/abiosoft/colima


Proxmox CT lab


	Containers
	What are containers?
	Slide 3
	Slide 4
	Advantages of containers
	Slide 6
	Disadvantages of containers
	Container security
	Container security options
	Container management
	Two types of container platform
	Proxmox CT
	incus (fork of lxd)
	Proxmox CT lab

