Docker:
Containers for application delivery

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O

Containers for software delivery

* Wouldn't it be great if:

— Software environments were exactly identical between the developer's
workstation, the test system, and the final production system?

— Software was self-contained and had no dependencies on the underlying
OS version?

— Multiple applications with different requirements could all run on the same
host?

* We can do this with containers!

0 UNIVERSITY OF OREGON NSRC

O

Quick aside on terminology

We loosely refer to this as "docker containers”
Docker pioneered the approach

However, the container format is now standardized
— OCI: Open Container Initiative

There are different tools which work with it

Docker is only one of those tools
— (and it's a big, monolithic one)

UNIVERSITY OF OREGON

eeeeeeeeeeeeeeeeeeeeeeeeeeee

The concept

* One container = one application or service
— Keeps components isolated from each other
* Containers are always deployed from pre-built images
(downloaded from a registry)
— Container image contains the software and everything it depends on
* Containers are not managed like VMs
— In particular, you never upgrade software within a container
— You destroy the old container, and create a new one from a new image!

0 UNIVERSITY OF OREGON NSRC

Filesystem layers

Read Write

Upper Layer

* The container has a read-only image as its base layer
* Any files it writes go into an upper layer (stores the differences)
* Multiple containers can share the same base layer

UNIVERSITY OF OREGON NSRC
Network Startup Resource Center

Stateless and Stateful

* Upper layer cannot be moved to a new container

* ldeally, containers are stateless

— e.g. they access data in a remote database and do not store anything
locally

— Obviously it's safe to blow these away
— It's also safe to run multiple instances for load sharing and redundancy

* Some containers need to be stateful
— Store all important files in a specific directory
— Mount a persistent "volume" at this location
— When container is recreated, volume preserves existing data

0 UNIVERSITY OF OREGON NSRC

What you need

* A way to build container images
— This is the starting filesystem for a container
— It contains the application and all its dependencies

* A way to distribute container images
* A way to run container images

UNIVERSITY OF OREGON

O

Container workflow

Developer i > Image . » Operations
ul A u
’ Regist ’
Push A Run
Pull,
Run
Test

* The registry ensures all users get exactly the same image

* Running as a container isolates it from everything else on the
host

* Software runs the same everywhere!

0 UNIVERSITY OF OREGON NSRC

Network Startup Resource Center

Enabling new workflows: "gitops”

Developer commits their code to git

Automatically triggers build of container image

If build successful, automatically triggers a run of all tests
— CI: Continuous Integration

If tests pass, automatically run in production
— CD: Continuous Deployment

Rapid, effective application development
— And easy rollback to previous image if required

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O

Common tools for containers

* Running containers: docker, podman (runc, containerd)
* Building images: docker, buildah

* Distributing images: CNCF Distribution*, docker hub, quay.io,
github packages, AWS ECR, Sonatype Nexus, ...

* Orchestrating multiple containers: docker compose, kubernetes
* Gitops: Argo CD, Flux CD, github actions, Jenkins X, ...

* Docker still popular with developers. Production deployments are
moving away from it

* Formerly known as Docker Registry

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O

Using docker

* You can install docker directly on a Linux laptop or server

— but beware that it messes with your iptables ruleset

— anyone in the "docker" group effectively gets root on your machine 1
* Safertorunitina VM

— you might be able to run it inside a container (with nesting=true) but some
things may not work properly

* Docker Desktop*, Podman Desktop and Colima automate the
creation of the VM in a convenient way
— and let you communicate with docker engine as if it were local
— attractive for developers, especially on macOS and Windows

* Docker Desktop is not free software, but is free to use in some cases

0 UNIVERSITY OF OREGON NSRC

Building containers

* "Dockerfile" contains a series of script steps to build/install the

application into a container
* This is a software development activity

syntax=docker/dockerfile:1l
FROM ubuntu:22.04

install app dependencies
RUN pip install flask==3.0.%*

install app
COPY hello.py /

final configuration
ENV FLASK APP=hello
EXPOSE 8000

CMD ["flask", "run", "--host", "0.0.0.0", "--port",

RUN apt-get update && apt-get install -y python3 python3-pip

u8000n]

UNIVERSITY OF OREGON

O

NSRC

Network Startup Resource Center

O

Deploying containers in production

Requirements:

— Distribute containers across multiple nodes

— Self-healing (failed node — redeploy containers)
— Auto-scaling, redundancy, ...

There were several competing solutions
Kubernetes won out. The others all lost.

Very powerful. Very modular. Very complex.

— There are all-in-one distributions to get started with (k3s, kOs, microk8s,
minikube)
— And a range of frontends like Portainer, Rancher

UNIVERSITY OF OREGON NSRC

Complexities

Things that are likely to trip you up include:
Persistent Storage

Networking

— Container to container communication (CNI)

— Outside world to container (ingress, load-balancer)

— TLS certificate deployment

Applying different settings to different environments

Resource allocation / limits

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O

Summary: Benefits

* Container images are pre-packaged and ready to run

* Reproducible: runs identically in production, development and test
environments

* Relieves you of the need to install application dependencies in
the host OS

* Run many different types of application in essentially the same
way

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O

	Docker: Containers for application delivery
	Containers for software delivery
	Quick aside on terminology
	The concept
	Filesystem layers
	Stateless and Stateful
	What you need
	Container workflow
	Enabling new workflows: "gitops"
	Common tools for containers
	Using docker
	Building containers
	Deploying containers in production
	Complexities
	Summary: Benefits

