
Docker:
Containers for application delivery

Containers for software delivery

• Wouldn't it be great if:
– Software environments were exactly identical between the developer's

workstation, the test system, and the final production system?
– Software was self-contained and had no dependencies on the underlying

OS version?
– Multiple applications with different requirements could all run on the same

host?

• We can do this with containers!

Quick aside on terminology

• We loosely refer to this as "docker containers"
• Docker pioneered the approach
• However, the container format is now standardized

– OCI: Open Container Initiative

• There are different tools which work with it
• Docker is only one of those tools

– (and it's a big, monolithic one)

The concept

• One container = one application or service
– Keeps components isolated from each other

• Containers are always deployed from pre-built images
(downloaded from a registry)
– Container image contains the software and everything it depends on

• Containers are not managed like VMs
– In particular, you never upgrade software within a container
– You destroy the old container, and create a new one from a new image!

Filesystem layers

• The container has a read-only image as its base layer
• Any files it writes go into an upper layer (stores the differences)
• Multiple containers can share the same base layer

Base Container Image

Upper Layer

Read Write

Stateless and Stateful

• Upper layer cannot be moved to a new container
• Ideally, containers are stateless

– e.g. they access data in a remote database and do not store anything
locally

– Obviously it's safe to blow these away
– It's also safe to run multiple instances for load sharing and redundancy

• Some containers need to be stateful
– Store all important files in a specific directory
– Mount a persistent "volume" at this location
– When container is recreated, volume preserves existing data

What you need

• A way to build container images
– This is the starting filesystem for a container
– It contains the application and all its dependencies

• A way to distribute container images
• A way to run container images

Container workflow

• The registry ensures all users get exactly the same image
• Running as a container isolates it from everything else on the

host
• Software runs the same everywhere!

Developer OperationsImage
RegistryBuild,

Push
Pull,
Run

Test

Pull,
Run

Enabling new workflows: "gitops"

• Developer commits their code to git
• Automatically triggers build of container image
• If build successful, automatically triggers a run of all tests

– CI: Continuous Integration

• If tests pass, automatically run in production
– CD: Continuous Deployment

• Rapid, effective application development
– And easy rollback to previous image if required

Common tools for containers

• Running containers: docker, podman (runc, containerd)
• Building images: docker, buildah
• Distributing images: CNCF Distribution*, docker hub, quay.io,

github packages, AWS ECR, Sonatype Nexus, …
• Orchestrating multiple containers: docker compose, kubernetes
• Gitops: Argo CD, Flux CD, github actions, Jenkins X, …
• Docker still popular with developers. Production deployments are

moving away from it

* Formerly known as Docker Registry

Using docker

• You can install docker directly on a Linux laptop or server
– but beware that it messes with your iptables ruleset
– anyone in the "docker" group effectively gets root on your machine ⚠

• Safer to run it in a VM
– you might be able to run it inside a container (with nesting=true) but some

things may not work properly

• Docker Desktop*, Podman Desktop and Colima automate the
creation of the VM in a convenient way
– and let you communicate with docker engine as if it were local
– attractive for developers, especially on macOS and Windows

* Docker Desktop is not free software, but is free to use in some cases

Building containers

• "Dockerfile" contains a series of script steps to build/install the
application into a container

• This is a software development activity

syntax=docker/dockerfile:1
FROM ubuntu:22.04

install app dependencies
RUN apt-get update && apt-get install -y python3 python3-pip
RUN pip install flask==3.0.*

install app
COPY hello.py /

final configuration
ENV FLASK_APP=hello
EXPOSE 8000
CMD ["flask", "run", "--host", "0.0.0.0", "--port", "8000"]

Deploying containers in production

• Requirements:
– Distribute containers across multiple nodes
– Self-healing (failed node → redeploy containers)
– Auto-scaling, redundancy, ...

• There were several competing solutions
• Kubernetes won out. The others all lost.
• Very powerful. Very modular. Very complex.

– There are all-in-one distributions to get started with (k3s, k0s, microk8s,
minikube)

– And a range of frontends like Portainer, Rancher

Complexities

• Things that are likely to trip you up include:
• Persistent Storage
• Networking

– Container to container communication (CNI)
– Outside world to container (ingress, load-balancer)
– TLS certificate deployment

• Applying different settings to different environments
• Resource allocation / limits
• …

Summary: Benefits

• Container images are pre-packaged and ready to run
• Reproducible: runs identically in production, development and test

environments
• Relieves you of the need to install application dependencies in

the host OS
• Run many different types of application in essentially the same

way

	Docker: Containers for application delivery
	Containers for software delivery
	Quick aside on terminology
	The concept
	Filesystem layers
	Stateless and Stateful
	What you need
	Container workflow
	Enabling new workflows: "gitops"
	Common tools for containers
	Using docker
	Building containers
	Deploying containers in production
	Complexities
	Summary: Benefits

