
Bob Rotsted

Introduction to Kubernetes 



What is a Kubernetes!?
Clusters, Nodes, Control Planes 

• A Kubernetes cluster consists of a set of worker machines called nodes, 
that run containerized applications. Every cluster has at least one worker 
node.

• The worker nodes host the application workloads. 
• The control plane manages the worker nodes and the Pods in the cluster. 

In production environments, the control plane usually runs across 
multiple computers and a cluster usually runs multiple nodes, providing 
fault-tolerance and high availability.



Review: Running a Container
Local Management vs. Cluster Orchestration

• On Your Laptop: Running Docker containers directly on your laptop 
involves manual management using Docker CLI commands. You're 
responsible for starting, stopping, and managing the containers and their 
configurations individually.

• In Kubernetes: Kubernetes orchestrates containers at scale across a 
cluster of machines. It manages the deployment, scaling, and networking 
of containers automatically according to defined configurations (e.g., 
YAML files).



Review: Running a Container
Single Host vs. Multi-Host Deployment

• On Your Laptop: Containers run on a single host, your laptop. This setup 
is suitable for development, testing, or small-scale production 
environments where high availability and scalability are not critical 
concerns.

• In Kubernetes: Containers are deployed across multiple nodes in a 
cluster, offering high availability, load balancing, and scalability. 
Kubernetes ensures that applications can handle increased load or 
failures in the cluster by adjusting the number of running containers as 
needed.



Review: Running a Container
Manual Scaling vs. Automated Scaling and Self-healing

• On Your Laptop: Scaling involves manually starting more containers or 
stopping them as needed. There is no built-in mechanism for 
automatically adjusting the number of running containers based on 
demand or for replacing failed containers.

• In Kubernetes: Kubernetes supports automated scaling based on metrics 
like CPU usage or custom metrics. It also provides self-healing by 
automatically replacing containers that fail, are unresponsive, or don't 
meet the user-defined health criteria.



From Monoliths to Microservices

• Kubernetes is designed around the idea of microservices—small, loosely 
coupled services that communicate over well-defined APIs. This requires 
developers to think about applications as a collection of independent 
services rather than a single, monolithic codebase.

• Services must be designed to operate independently, allowing for scaling, 
updates, and failure recovery without affecting the entire application.

Running infrastructure the Kubernetes way



Cluster Infrastructure



https://medium.com/the-programmer/kubernetes-fundamentals-for-absolute-beginners-architecture-
components-1f7cda8ea536



Control Plane
The infrastructure that orchestrates containers

• API Server: The frontend to the control plane that exposes the 
Kubernetes API.

• etcd: A consistent and highly-available key value store used as 
Kubernetes' backing store for all cluster data.

• Scheduler: Watches for newly created Pods with no assigned node, and 
selects a node for them to run on.

• … 



Nodes
The infrastructure that executes the containers 

• kubelet: An agent that runs on each node in the cluster, ensuring containers are running in a Pod 
according to their specifications.

• Kube-Proxy: Manages network rules on each node, enabling network communication to Pods from 
within or outside the cluster.

• Container Runtime: The underlying software used to run containers, such as Docker, containerd, or 
any Kubernetes CRI (Container Runtime Interface)-compliant runtime.

• Node Controller: Part of the control plane that monitors the health and status of nodes, handling 
tasks like lifecycle operations and maintenance.

• Container Network Interface (CNI): A set of standards and libraries for configuring network 
interfaces for Linux containers. CNI is used in Kubernetes to facilitate Pod networking, allowing Pods 
to communicate with each other and with the outside world in a standardized way.

• …



Managed Kubernetes
Elastic Kubernetes Service (EKS)

• Cluster Management: Automates the provisioning, setup, and scaling of 
Kubernetes clusters, reducing the complexity of cluster management.

• High Availability: Ensures clusters are highly available and distributed 
across multiple availability zones to minimize downtime.

• Security: Integrates with cloud provider security services to manage 
access and encryption, enhancing the security posture of your 
applications.

• Scalability: Automatically scales resources based on demand, ensuring 
efficient resource utilization and performance.



Managed Kubernetes: EKS
How we built today’s lab environment

• Built and deployed with 
Terraform

• Code is in Github: https://github.co
m/nsrc-org/cloud-virt-labs/blob/main/ek
s-terraform/main.tf

• AWS is managing “node 
groups” for our cluster and can 
auto-scale the number of 
nodes in our cluster based on 
utilization

https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf


Networking
Communication Within the Cluster

• Flat Network Space: Kubernetes 
assigns a unique IP address to each 
pod across the cluster, enabling 
direct communication between pods 
without NAT (Network Address 
Translation).

• No Overlapping IPs: Pods can 
communicate with each other using 
their IP addresses, assuming they 
know those IPs, without any IP 
overlap issues.

https://nigelpoulton.com/demystifying-kubernetes-service-
discovery/



Networking
Services - Stable access in a dynamic environment 

• Stable Access Point: Pods can be created, destroyed, and moved frequently, 
causing their IP addresses to change. A Service acts as an abstraction layer that 
provides a single, fixed entry point for accessing a set of pods that offer the 
same functionality. For reliability purposes, a pod should speak to a service 
abstraction rather than directly to a pod’s IP address.

• Load Balancing: A Service automatically distributes incoming network traffic 
across all pods that match its selector criteria, effectively load balancing 
requests to maintain application performance and reliability.

• Service Discovery: Kubernetes uses DNS for service discovery. Each Service is 
assigned a DNS name, making it easy for internal communication within the 
cluster. Pods can resolve the Service name to its stable IP address to access the 
service.



Networking
What is a CNI? 

• Pod Networking: When a Pod is created or 
destroyed, Kubernetes invokes the configured 
CNI plugin to attach or detach the network from 
the Pod. This process includes assigning IP 
addresses, setting up routes, and managing DNS 
settings.

• Pluggable Architecture: Kubernetes does not 
provide a default network implementation but 
relies on third-party CNI plugins to implement 
the networking layer. Examples include Flannel, 
Calico, Weave Net, and Cilium.

• Network Isolation: Beyond basic connectivity, 
CNI plugins can enforce network policies, 
providing isolation between Pods across 
different namespaces or within the same 
namespace, enhancing security within a 
Kubernetes cluster.

https://docs.cilium.io/en/stable/installation/cni-chaining-aws-
cni/



Networking
Ingress - Expose your Service to Clients 

• Ingress in Kubernetes helps manage 
access from the outside world to 
your services inside the Kubernetes 
cluster.

• It makes sure that incoming internet 
traffic gets to the right place safely 
and efficiently.

• NGINX can serve as an Ingress 
controller in a Kubernetes 
environment

• NGINX's ingress controller can 
handle handle SSL termination, load 
balancing, and authentication 

https://www.nginx.com/blog/announcing-nginx-ingress-controller-for-kubernetes-
release-1-7-0/



Resources



Resource Types
Pods, Deployments and StatefulSets 

• Pods: The smallest, most basic deployable objects in Kubernetes that 
represent a single instance of a running process in your cluster. Pods contain 
one or more containers, such as Docker containers.

• Deployments: Higher-level management entities that describe the desired 
state of Pods. Deployments control the scaling and lifecycle of a set of Pods, 
ensuring that the specified number of Pods are running and updating them 
as needed.

• StatefulSets: Designed for stateful applications that require persistent 
storage, stable, unique network identifiers, and orderly deployment and 
scaling. StatefulSets are ideal for applications like databases that need to 
maintain state across restarts and scaling operations.



Resource Manifest
A YAML file that declares a resources desired state
• It specifies various settings and 

configurations such as the containers the Pod 
should run, their images, resource limits, 
environmental variables, volumes, and more. 

• The Kubernetes API server uses this manifest 
to create, update, and manage the Pod 
according to the specifications outlined in the 
file.



YAML Basics
Example Data Structures

Key / Value 
Pairs Lists Maps / 

Dictionaries
Nested 

Structures



Pods
• apiVersion: Specifies the version of the Kubernetes API you're 

using to create the object. For Pods, it's typically v1.
• kind: The type of Kubernetes object you're defining. For a Pod 

manifest, this is Pod.
• metadata: Contains data that helps uniquely identify the Pod, 

including its name and labels.
• spec: The specification section where you define the containers 

the Pod will run, their images, ports, environment variables, and 
more.

• containers: A list of containers to run in the Pod. Each 
container's name, image, and other settings like ports, env 
(environment variables), resources (CPU and memory limits and 
requests), and volumeMounts are specified here.

• volumes: Defines the storage volumes that the Pod can use. 
These volumes can then be mounted into containers.

A single instance of a running process



Pods
Best Practices

• One Application per Pod: As a general rule, it's recommended to run one 
application per Pod. This simplifies management, scaling, and deployment

• Reserve multi-container Pods for scenarios where the containers are 
tightly coupled and need to be managed as a single unit

• You may want to deploy multiple applications in a pod in cases where you 
need a logging agent that shares storage volumes with an application. 
This is called a “sidecar” pattern. 



Deployments
Control the scaling and lifecycle of a set of Pods

• Replicas: Specifies that 2 
instances of the nginx container 
should be running.

• Selector and Labels: Uses app: 
nginx to match the deployment 
with the pods it manages.

• Container Image: The nginx 
container will use the nginx image 
from a container registry.



Deployments
Control the scaling and lifecycle of a set of Pods

• Control Pod Placement: 
Deployments allow you to manage 
pod affinity or anti-affinity, which 
means you can influence how pods 
are distributed across nodes in your 
cluster.

• Enforce Anti-Affinity: In the 
example provided, we've used pod 
anti-affinity to ensure that the nginx 
pods do not share the same host. 
This is achieved by setting rules that 
prevent scheduling them together.



Resource: Secret
Securely Managing Sensitive Data
• A Secret is used to store sensitive information, such as passwords, OAuth tokens, and ssh 

keys, in key-value pairs.
• Secrets can be mounted as volumes inside pods or their key-value pairs can be used as 

environment variables
• The data in a secret is required to be base64 encoded ensuring that the secret's data can be 

safely represented as a string. This is important for binary data or data that may contain 
special characters that could be misinterpreted by systems or tools processing the YAML or 
JSON files.



Resource: ConfigMap
Centralizing Configuration Management

• A ConfigMap is used to store non-confidential data in key-value pairs.
• ConfigMaps can be mounted as volumes inside pods or their key-value 

pairs can be used as environment variables



Namespaces
Organizing Cluster Resources Efficiently

• Logical Partitioning: Namespaces in Kubernetes provide a way to divide 
cluster resources between multiple users through logical partitioning.

• Organizational Tool: They serve as an organizational tool to group, isolate, 
and manage objects like Pods, Deployments, and Services within a cluster.

• Resource Management: Namespaces help in managing resource quotas, 
limiting the amount of resources (CPU, memory) that a group or project can 
use, thereby preventing one team or project from monopolizing cluster 
resources.

• Access Control: They facilitate fine-grained access control by allowing 
administrators to set permissions on a per-namespace basis, enhancing 
security.



Using Kubernetes



kubectl
Command-Line Interface (CLI) for Kubernetes

• Cluster Management: Enables users to manage various aspects of 
Kubernetes clusters, including launching applications, scaling 
deployments, and rolling out updates to applications or configurations.

• Resource Inspection: Offers commands to view the state of cluster 
resources, such as Pods, Deployments, Services, and more, helping users 
troubleshoot issues and understand cluster activity.



kubectl get nodes
Show the clusters nodes

• The "kubectl get nodes" command lists all the nodes in a Kubernetes 
cluster.

• It shows the status, roles, ages, and version for each node in a concise 
table format.

• This command helps administrators monitor the health and capacity of 
the cluster.



kubectl apply -f <manifest yaml file>
Deploy a Kubernetes Resource 

• Used to create or update resources in a Kubernetes cluster based on the 
definitions provided in a YAML or JSON manifest file.

• This command is idempotent, meaning it can be run multiple times 
without changing the result beyond the initial application. It ensures that 
the actual state of the cluster matches the desired state specified in the 
manifest file.

• This command is declarative, meaning you declare the desired state of 
your resources, and Kubernetes works to maintain that state.

• Aside: many available tools for customising / preprocessing manifests
• e.g. kustomize, helm, jsonnet (tanka / kubecfg), cuelang, …



kubectl get pods
Show information about pods

• The "kubectl get pods" command is utilized to list all the pods in a 
Kubernetes cluster or within a specific namespace. 

• This command provides a snapshot of all current pods, showing their 
names, status, number of restarts, and age. 

• By default, it lists pods in the default namespace unless another 
namespace is specified. The command can also be customized with 
various flags to filter, sort, or format the output, making it a versatile tool 
for managing and inspecting pods.



kubectl logs <pod name>
Show logs from a container

• The “kubectl logs” command is used to retrieve logs from containers 
running inside pods in a Kubernetes cluster.

• This command will display the stdout and stderr streams of the container 
running in the specified pod. 



Troubleshooting
Identifying Kubernetes Scheduling Issues

• When a pod isn't being scheduled in Kubernetes, the output from 
kubectl get pods will typically show the status of the pod as Pending 

• This indicates that the pod has been accepted by the Kubernetes system 
but hasn't been assigned to a node for execution. 

• Example of what the output might look like:



Troubleshooting
Resolving Kubernetes Scheduling Issues

• To get more detailed information about why the pod isn't being 
scheduled, you can use the kubectl describe pod <pod-name> 
command.

• This will provide events and messages from the scheduler that can help 
identify issues such as insufficient resources that are preventing the pod 
from being scheduled.



Questions / Comments


	Introduction to Kubernetes
	What is a Kubernetes!?
	Review: Running a Container
	Review: Running a Container (2)
	Review: Running a Container (3)
	From Monoliths to Microservices
	Slide 7
	Slide 8
	Control Plane
	Nodes
	Managed Kubernetes
	Managed Kubernetes: EKS
	Networking
	Networking (2)
	Networking (3)
	Networking (4)
	Slide 17
	Resource Types
	Resource Manifest
	YAML Basics
	Pods
	Pods (2)
	Deployments
	Deployments (2)
	Resource: Secret
	Resource: ConfigMap
	Namespaces
	Slide 28
	kubectl
	kubectl get nodes
	kubectl apply -f <manifest yaml file>
	kubectl get pods
	kubectl logs <pod name>
	Troubleshooting
	Troubleshooting (2)
	Slide 36

