Introduction to Kubernetes

Bob Rotsted NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

What is a Kubernetes!?

Clusters, Nodes, Control Planes

* A Kubernetes cluster consists of a set of worker machines called nodes,
that run containerized applications. Every cluster has at least one worker
node.

®* The worker nodes host the application workloads.

* The control plane manages the worker nodes and the Pods in the cluster.
In production environments, the control plane usually runs across
multiple computers and a cluster usually runs multiple nodes, providing
fault-tolerance and high availability.

Review: Running a Container

Local Management vs. Cluster Orchestration

®* On Your Laptop: Running Docker containers directly on your laptop
involves manual management using Docker CLI commands. You're
responsible for starting, stopping, and managing the containers and their
configurations individually.

* In Kubernetes: Kubernetes orchestrates containers at scale across a
cluster of machines. It manages the deployment, scaling, and networking
of containers automatically according to defined configurations (e.q.,
YAML files).

Review: Running a Container
Single Host vs. Multi-Host Deployment

®* On Your Laptop: Containers run on a single host, your laptop. This setup
is suitable for development, testing, or small-scale production
environments where high availability and scalability are not critical
concerns.

°* In Kubernetes: Containers are deployed across multiple nodes in a
cluster, offering high availability, load balancing, and scalability.
Kubernetes ensures that applications can handle increased load or
failures in the cluster by adjusting the number of running containers as
needed.

Review: Running a Container

Manual Scaling vs. Automated Scaling and Self-healing

* On Your Laptop: Scaling involves manually starting more containers or
stopping them as needed. There is no built-in mechanism for
automatically adjusting the number of running containers based on
demand or for replacing failed containers.

°* In Kubernetes: Kubernetes supports automated scaling based on metrics
like CPU usage or custom metrics. It also provides self-healing by
automatically replacing containers that fail, are unresponsive, or don't
meet the user-defined health criteria.

From Monoliths to Microservices

Running infrastructure the Kubernetes way

* Kubernetes is designed around the idea of microservices—small, loosely
coupled services that communicate over well-defined APIs. This requires
developers to think about applications as a collection of independent
services rather than a single, monolithic codebase.

* Services must be designed to operate independently, allowing for scaling,
updates, and failure recovery without affecting the entire application.

Cluster Infrastructure

Kubernetes Cluster

ll

Worker Nodes '
: Cloud
Node 1 . Provider

i Network Edge

Pods

Ctrl Plane - 1,2...n -' : 5

32" Container Runtime : :

mmamdl kubelet :
i E Load

Balancer

controller PR kube System Services
apiserver > e T B
scneaur [

Master Node

Container Runtime

- ----\

kubelet

System Services

|

o = = =

https://medium.com/the-programmer/kubernetes-fundamentals-for-absolute-beginners-architecture-
components-1f7cda8ea536

Control Plane

The infrastructure that orchestrates containers

* API Server: The frontend to the control plane that exposes the
Kubernetes API.

* etcd: A consistent and highly-available key value store used as
Kubernetes' backing store for all cluster data.

* Scheduler: Watches for newly created Pods with no assigned node, and
selects a node for them to run on.

Nodes

The infrastructure that executes the containers

* kubelet: An agent that runs on each node in the cluster, ensuring containers are running in a Pod
according to their specifications.

* Kube-Proxy: Manages network rules on each node, enabling network communication to Pods from
within or outside the cluster.

* Container Runtime: The underlying software used to run containers, such as Docker, containerd, or
any Kubernetes CRI (Container Runtime Interface)-compliant runtime.

°* Node Controller: Part of the control plane that monitors the health and status of nodes, handling
tasks like lifecycle operations and maintenance.

* Container Network Interface (CNI): A set of standards and libraries for configuring network
interfaces for Linux containers. CNI is used in Kubernetes to facilitate Pod networking, allowing Pods
to communicate with each other and with the outside world in a standardized way.

Managed Kubernetes

Elastic Kubernetes Service (EKS)

* Cluster Management: Automates the provisioning, setup, and scaling of
Kubernetes clusters, reducing the complexity of cluster management.

* High Avalilability: Ensures clusters are highly available and distributed
across multiple availability zones to minimize downtime.

* Security: Integrates with cloud provider security services to manage
access and encryption, enhancing the security posture of your
applications.

* Scalability: Automatically scales resources based on demand, ensuring
efficient resource utilization and performance.

Managed Kubernetes: EKS

How we built today’s lab environment

resource "aws_eks_cluster" "eks_cluster" {

name = "my—-eks—-cluster" ¢ BUilt and deployed With
role_arn = aws_iam_role.eks_cluster_role.arn Te rrafO rm

vpc_config {

subnet_ids = [aws_subnet.eks_subnetl.id, aws_subnet.eks_subnet2.id] ® COde iS in GithUb: httpS//g|thUbCO

security_group_ids = [aws_security_group.eks_cluster_sg.id]

m/nsrc-org/cloud-virt-labs/blob/main/ek

i s-terraform/main.tf

Specify the Kubernetes version for your EKS cluster

version = 1.29" * AWS is managing “node

depends_on = [groups” for our cluster and can
aws_iam_role_policy_attachment.eks_AmazonEKSClusterPolicy,
aws_iam_role_znlic:_attachment.eks_AmazunEKSVPCResnurceCzntrnller, aUtO-S(;ale the number Of

: nodes in our cluster based on

utilization

}

https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf
https://github.com/algorerhythm/nsrc-apricot-24/blob/main/eks-terraform/main.tf

Networking

Communication Within the Cluster

* Flat Network Space: Kubernetes
assigns a unique IP address to each

pod across the cluster, enabling

direct communication between pods @ @ @ @ @

Wlt h O Ut N AT (N etWO rk Ad d ress 10.21.4.9 10.21.4.33 10.21.4.7 10.21.4.40 10.21.4.18
Translation).

Pod network (VXLAN) 10.21.4.0/24

* No Overlapping IPs: Pods can
COmmur"Cate W|th eaCh Other us|ng https://nigelpouIton.comédemysthjying-kubernetes-service-
iscovery

their IP addresses, assuming they
know those IPs, without any IP

overlap issues.

Networking

Services - Stable access in a dynamic environment

* Stable Access Point: Pods can be created, destroyed, and moved frequently,
causing their IP addresses to change. A Service acts as an abstraction layer that
provides a single, fixed entry point for accessing a set of pods that offer the
same functionality. For reliability purposes, a pod should speak to a service
abstraction rather than directly to a pod'’s IP address.

* Load Balancing: A Service automatically distributes incoming network traffic
across all pods that match its selector criteria, effectively load balancing
requests to maintain application performance and reliability.

* Service Discovery: Kubernetes uses DNS for service discovery. Each Service is
assigned a DNS name, making it easy for internal communication within the
cluster. Pods can resolve the Service name to its stable IP address to access the
service.

Networking
What is a CNI?

* Pod Networking: When a Pod is created or
destroyed, Kubernetes invokes the configured
CNI plugin to attach or detach the network from
the Pod. This process includes assigning IP

. . Worker Nod
addresses, setting up routes, and managing DNS orerToge WSCNL
' J pod 7 pod - Device plumbin
settings. [] [] _ i
192.168.1.1 192.168.1.2 [c%ﬁgent] - IPAM (ENI)
. ath eth) - Rouling
* Pluggable Architecture: Kubernetes does not = o —
provide a default network implementation but @pj [E@ - tontios
relies on third-party CNI plugins to implement s/ (ingress _Encryption
the networking layer. Examples include Flannel, Lmumm!g e
Calico, Weave Net, and Cilium. O
192.168.1.2/32 via enizz
* Network Isolation: Beyond basic connectivity, e
. o o elno
CNI plugins can enforce network policies, e it ettt e
providing isolation between Pods across ttps://docs.cilium.io/en/sta Cﬁi//msta ation/cni-chaining-aws-

different namespaces or within the same
namespace, enhancing security within a
Kubernetes cluster.

Networking

Ingress - Expose your Service to Clients

* Ingress in Kubernetes helps manage
access from the outside world to
your services inside the Kubernetes
CI U Ste . cluster

* It makes sure that incoming internet | d 7
traffic gets to the right place safely ~ etent .. TN» R —routing ruie—» [PRES
and efficiently. NG

* NGINX can serve as an Ingress
CO ntrO”er |n a Ku bern Etes https://www.nginx.com/blog/anno;Jer;g;r;ge—_??;?g/—ingress—controlIer—for—kubernetes—
environment

* NGINX's ingress controller can
handle handle SSL termination, load
balancing, and authentication

Resources

Resource Types
Pods, Deployments and StatefulSets

* Pods: The smallest, most basic deployable objects in Kubernetes that
represent a single instance of a running process in your cluster. Pods contain
one or more containers, such as Docker containers.

* Deployments: Higher-level management entities that describe the desired
state of Pods. Deployments control the scaling and lifecycle of a set of Pods,
ensuring that the specified number of Pods are running and updating them
as needed.

* StatefulSets: Designed for stateful applications that require persistent
storage, stable, unique network identifiers, and orderly deployment and
scaling. StatefulSets are ideal for applications like databases that need to
maintain state across restarts and scaling operations.

Resource Manifest

A YAML file that declares a resources desired state

* It specifies various settings and
configurations such as the containers the Pod
should run, their images, resource limits,
environmental variables, volumes, and more.

®* The Kubernetes API server uses this manifest
to create, update, and manage the Pod
according to the specifications outlined in the
file.

YAML Basics

Example Data Structures

Key / Value Maps / Nested

Lists

Pods

A single instance of a running process

apiVersion: Specifies the version of the Kubernetes API you're
using to create the object. For Podes, it's typically v1.

kind: The type of Kubernetes object you're defining. For a Pod
manifest, this is Pod.

metadata: Contains data that helps uniquely identify the Pod,
including its name and labels.

spec: The specification section where you define the containers
the Pod will run, their images, ports, environment variables, and
more.

containers: A list of containers to run in the Pod. Each
container's name, image, and other settings like ports, env
(environment variables), resources (CPU and memory limits and
requests), and volumeMounts are specified here.

volumes: Defines the storage volumes that the Pod can use.
These volumes can then be mounted into containers.

Pods

Best Practices

°* One Application per Pod: As a general rule, it's recommended to run one
application per Pod. This simplifies management, scaling, and deployment

* Reserve multi-container Pods for scenarios where the containers are
tightly coupled and need to be managed as a single unit

* You may want to deploy multiple applications in a pod in cases where you
need a logging agent that shares storage volumes with an application.

This is called a “sidecar” pattern.

Deployments

Control the scaling and lifecycle of a set of Pods

* Replicas: Specifies that 2
instances of the nginx container
should be running.

* Selector and Labels: Uses app:
nginx to match the deployment
with the pods it manages.

* Container Image: The nginx
container will use the nginx image
from a container registry.

Deployments

Control the scaling and lifecycle of a set of Pods

* Control Pod Placement:
Deployments allow you to manage
pod affinity or anti-affinity, which
means you can influence how pods
are distributed across nodes in your
cluster.

* Enforce Anti-Affinity: In the
example provided, we've used pod
anti-affinity to ensure that the nginx
pods do not share the same host.
This is achieved by setting rules that
prevent scheduling them together.

Resource: Secret

Securely Managing Sensitive Data

®* A Secretis used to store sensitive information, such as passwords, OAuth tokens, and ssh
keys, in key-value pairs.

* Secrets can be mounted as volumes inside pods or their key-value pairs can be used as
environment variables

®* The data in a secret is required to be base64 encoded ensuring that the secret's data can be
safely represented as a string. This is important for binary data or data that may contain
special characters that could be misinterpreted by systems or tools processing the YAML or

JSON files.

apiVersion: vl

Kind: Secret
metadata:

name: my-secret
type: Opaque
data:

password: bXLTdHJvbmdQYXNzd29yZA==

Resource: ConfigMap

Centralizing Configuration Management

* A ConfigMap is used to store non-confidential data in key-value pairs.

* ConfigMaps can be mounted as volumes inside pods or their key-value
pairs can be used as environment variables

apiVersion: vl
kind: ConfigMap
metadata:

name: my-configmap
data:

config.json: |

{

"kKey": "value”,
"items": ["iteml", "item2"]
}

log_level: "info"

Namespaces

Organizing Cluster Resources Efficiently

* Logical Partitioning: Namespaces in Kubernetes provide a way to divide
cluster resources between multiple users through logical partitioning.

* Organizational Tool: They serve as an organizational tool to group, isolate,
and manage objects like Pods, Deployments, and Services within a cluster.

* Resource Management: Namespaces help in managing resource quotas,
limiting the amount of resources (CPU, memory) that a group or project can
use, thereby preventing one team or project from monopolizing cluster
resources.

* Access Control: They facilitate fine-grained access control by allowing
administrators to set permissions on a per-namespace basis, enhancing
security.

Using Kubernetes

kubectl

Command-Line Interface (CLI) for Kubernetes

* Cluster Management: Enables users to manage various aspects of
Kubernetes clusters, including launching applications, scaling

deployments, and rolling out updates to applications or configurations.

* Resource Inspection: Offers commands to view the state of cluster

resources, such as Pods, Deployments, Services, and more, helping users
troubleshoot issues and understand cluster activity.

kubectl get nodes

Show the clusters nodes

®* The "kubectl get nodes" command lists all the nodes in a Kubernetes
cluster.

* It shows the status, roles, ages, and version for each node in a concise
table format.

®* This command helps administrators monitor the health and capacity of
the cluster.

kubectl| apply -f <manifest yaml file>

Deploy a Kubernetes Resource

* Used to create or update resources in a Kubernetes cluster based on the
definitions provided in a YAML or JSON manifest file.

* This command is idempotent, meaning it can be run multiple times
without changing the result beyond the initial application. It ensures that
the actual state of the cluster matches the desired state specified in the

manifest file.

* This command is declarative, meaning you declare the desired state of
your resources, and Kubernetes works to maintain that state.

* Aside: many available tools for customising / preprocessing manifests

* e.g. kustomize, helm, jsonnet (tanka / kubecfg), cuelang, ...

kubectl get pods

Show information about pods

®* The "kubectl get pods" command is utilized to list all the pods in a
Kubernetes cluster or within a specific namespace.

®* This command provides a snapshot of all current pods, showing their
names, status, number of restarts, and age.

* By default, it lists pods in the default namespace unless another
namespace is specified. The command can also be customized with
various flags to filter, sort, or format the output, making it a versatile tool
for managing and inspecting pods.

Kubectl logs <pod name>

Show logs from a container

* The "kubectl logs” command is used to retrieve logs from containers
running inside pods in a Kubernetes cluster.

* This command will display the stdout and stderr streams of the container
running in the specified pod.

Troubleshooting

Identifying Kubernetes Scheduling Issues

* When a pod isn't being scheduled in Kubernetes, the output from
kubectl get pods will typically show the status of the pod as Pending

* This indicates that the pod has been accepted by the Kubernetes system
but hasn't been assigned to a node for execution.

* Example of what the output might look like:

NAME READY STATUS RESTARTS AGE

mypod-1 0/1 Pending 0 10m

Troubleshooting

Resolving Kubernetes Scheduling Issues

* To get more detailed information about why the pod isn't being
scheduled, you can use the kubectl describe pod <pod-name>
command.

* This will provide events and messages from the scheduler that can help
identify issues such as insufficient resources that are preventing the pod
from being scheduled.

Questions / Comments

	Introduction to Kubernetes
	What is a Kubernetes!?
	Review: Running a Container
	Review: Running a Container (2)
	Review: Running a Container (3)
	From Monoliths to Microservices
	Slide 7
	Slide 8
	Control Plane
	Nodes
	Managed Kubernetes
	Managed Kubernetes: EKS
	Networking
	Networking (2)
	Networking (3)
	Networking (4)
	Slide 17
	Resource Types
	Resource Manifest
	YAML Basics
	Pods
	Pods (2)
	Deployments
	Deployments (2)
	Resource: Secret
	Resource: ConfigMap
	Namespaces
	Slide 28
	kubectl
	kubectl get nodes
	kubectl apply -f <manifest yaml file>
	kubectl get pods
	kubectl logs <pod name>
	Troubleshooting
	Troubleshooting (2)
	Slide 36

