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Partitioning: a familiar approach

Accesses to virtual drives "C:" and "D:" are 
mapped to the real underlying drive
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How does partitioning work?

 Partition table is an example of metadata
 When the OS wants to access the Nth block, 

the real disk access is block (N+offset)

C: D:

1 100 199999

2 200000 500000
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Implementation: translation layer

 Very simple and fast: just add offset
 Data is contiguous on disk
 Moving/resizing a partition can require 

copying all the data on the disk :-(

block translation

"read C: block 5"

"read SATA block 105"



Could we use partitions for VM storage?

Certainly possible, but:
– Partitions are a pain to manage / move
– Partitions cannot span across drives

500GBhost OS guest 1 guest 2

Partition table Spare space



Solution: a Logical Volume Manager

• Assemble volumes from smaller chunks of disk space
• Can grow (and shrink) volumes by adding and removing chunks, 

without moving other data around
• Can allocate chunks from multiple physical disks
• For Linux there are two main choices: LVM and ZFS



Aside: ZFS

• ZFS is a filesystem
• …and a volume manager (vdevs → zpools → zvols)
• …and a RAID system (mirror, raidz1/2/3, dRAID)
• …and does compression, checksumming, bitrot repair
• …and does snapshotting and incremental replication
• It's very powerful, and highly recommended

– When used for VM block storage it can perform very well for some 
workloads, poorly for others. Tuning can sometimes help, e.g. recordsize

• For simplicity here we're going to use LVM



LVM Overview
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About LVM

• LVM stores data on "physical volumes", which are block devices
• Physical volumes divided into "extents" – usually 4MiB
• Physical volumes combined into "volume groups"
• Logical volume is a collection of extents from one volume group

– You can grow a logical volume by adding extents
– When you remove a LV, its extents are freed and can be re-used

• Small metadata tables map volume offsets to extents, and help 
assemble the volume groups correctly



More about LVM

• LVM stores a small amount of metadata
– small table of mappings from logical vols to extents
– volume IDs to allow the physical volumes to be recognized and 

assembled into volume groups automatically

• Extent mapping is very quick
• No need to move any data when adding, removing or resizing 

volume groups
• Can add new physical volumes to a volume group, to grow it



Accessing logical volumes
 Logical volumes appear as block devices

 /dev/VOLGROUP/VOLUME  or
 /dev/mapper/VOLGROUP-VOLUME

 CLI tools in the "lvm2" package, including:
 pvs, pvscan   # list all physical vols
 lvs, lvscan   # list all logical vols
 lvdisplay     # more detail
 lvcreate --size 1G --name foo myvg
 lvextend --size +512M myvg/foo
 lvremove myvg/foo



LVM and snapshots

• By default, LVM allocates all the extents for a logical volume at 
the time you create it
– You can't allocate more space than exists in the volume group
– A safe, conservative approach

• LVM can create snapshots of a logical volume, but it's inefficient
– If you modify any block in a snapshot, the whole 4MiB extent has to be 

duplicated. This is slow
– For this reason, Proxmox* and Linstor forbid snapshots in regular LVM

• But there is another option which involves "thin provisioning"

* PVE v9 has a technology preview of LVM snapshots via "volume chains", 
layering LVM volumes – but it still requires thin provisioning to be efficient



LVM thin provisioning

• Space is allocated "lazily", the first time you write to it
• It's allocated in smaller, 64KiB chunks, which make snapshots 

much more efficient
• Space is allocated from within a "thin pool", which is a regular 

LVM volume
– internally, a second small LVM volume holds metadata to track all the 

chunk allocations, and which snapshots they belong to (if any)



LVM thin provisioning
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Points to note

• Vol1/2/3 are still Logical Volumes, but they belong to the thin pool
• Only the chunks which have been written to are allocated
• You are allowed to "overprovision", i.e. create volumes whose 

total size is bigger than the thin pool
– Good, because it saves disk space, especially if you have many volumes 

which are not full
– Bad, because of the risk of running out of space in the thin pool: writes 

will halt until you add space to the thin pool, or delete some data

• Growing a thin pool is easy. Shrinking it is very, very hard
• Remember, you need it for LVM snapshots in Linstor



LVM RAID (dmraid)

• LVM also has built-in features for RAID (mirroring, RAID5, 
RAID6…)

• You might not need it if you have RAID underneath LVM, or some 
other replication on top of LVM. But it's good to know it's available

• Mirroring is configured at the level of individual logical volumes
– or an entire thin pool (since it is itself a logical volume)

• You can convert a plain volume to mirrored, and vice versa
– except thin pools are best created as mirrored if you want them that way



LVM mirroring
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LVM Lab



Loose ends: Booting with LVM



Note on physical volumes

• An LVM "physical volume" need not be an entire disk
– It can just be a partition

• Hence you can mix LVM and non-LVM on the same disk
• This is important if you don't have a separate boot disk; the 

partition table is needed for booting



Partitioning and LVM: old style

/boot
ext2 LVM PV

Partition table
Logical volumes for 

root, swap etc

 Partition table includes Master Boot Record
 sda1 (e.g. 1GB) partition for /boot filesystem (kernel)
 sda2 (rest of disk) is LVM physical volume

Space for more 
logical volumes

sda1 sda2



Systems which boot using BIOS and grub2

• The kernel and initrd are stored under /boot
• For older versions of grub, this had to be a regular partition

– Which limits size of /boot, and kernels are getting bigger…

• However, grub2 is able to read from inside LVM
• So newer systems don't need a /boot partition
• Still need a partition for LVM though

– grub2 is installed in the MBR and the blocks following it
– first partition should start at offset 2048

https://askubuntu.com/questions/76095/what-is-the-use-of-boot-lvm-based-in-partitioning


Partitioning and LVM (BIOS & grub2, no /boot)

LVM PV
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 blocks 0-2047 for MBR and grub2
 sda1 is LVM's "physical volume"
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Systems which boot using UEFI

• Modern PCs need a separate partition for booting using UEFI 
firmware instead of BIOS

• This is MS-DOS formatted, and mounted at /boot/efi
• Small is fine (100-250MB) since it doesn't contain the kernel
• You may find some Linux installers still create separate partitions 

for /boot and /boot/efi by default

# lsblk
nvme0n1                      259:0    0  1.8T  0 disk
├─nvme0n1p1                  259:2    0    1G  0 part /boot/efi
├─nvme0n1p2                  259:3    0    2G  0 part /boot
└─nvme0n1p3                  259:4    0  1.8T  0 part
  └─ubuntu--vg-ubuntu—lv     253:0    0  100G  0 lvm  /



Partitioning and LVM (UEFI)

/boot/efi
msdos LVM PV

Partition table
Logical volumes for 

root, swap etc

 Partition table includes Master Boot Record
 sda1 (e.g. 100MB) partition for /boot/efi
 sda2 (rest of disk) is LVM physical volume

Space for more 
logical volumes

sda1 sda2



Whole disk LVM

• You can choose to make the whole data disk be a physical 
volume (no partition table at all)

• If so, you need to find another way to boot
– Separate bootable OS disk
– Boot kernel from USB stick
– Boot kernel over network (PXEboot)

• Simpler? You decide



Take care!

• Dealing with logical volumes is like dealing with raw partitions, 
with the same dangers

• Easy to write to the wrong volume device!
– especially if LVs have auto-assigned, random-looking names

• Don't mount the same LV on the host and in a virtual machine, or 
in multiple VMs, or you'll corrupt the filesystem



Summary of LVM

• LVM breaks disk space into 4MiB extents
• Logical Volumes can be assembled out of any extents in a 

Volume Group
• A Volume Group can span multiple Physical Volumes
• Gives the speed of direct-to-disk access without the inflexibility of 

partitioning
• Thin pools permit overprovisioning and efficient volume 

snapshots, at the risk of running out of space
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