
Logical Volume Management

Cloud and Virtualization Workshop

Partitioning: a familiar approach

Accesses to virtual drives "C:" and "D:" are
mapped to the real underlying drive

500GBC:
200GB

D:
300GB

real drive

virtual drive virtual drive

How does partitioning work?

 Partition table is an example of metadata
 When the OS wants to access the Nth block,

the real disk access is block (N+offset)

C: D:

1 100 199999

2 200000 500000

Partition table

5000000

start offset end

Implementation: translation layer

 Very simple and fast: just add offset
 Data is contiguous on disk
 Moving/resizing a partition can require

copying all the data on the disk :-(

block translation

"read C: block 5"

"read SATA block 105"

Could we use partitions for VM storage?

Certainly possible, but:
– Partitions are a pain to manage / move
– Partitions cannot span across drives

500GBhost OS guest 1 guest 2

Partition table Spare space

Solution: a Logical Volume Manager

• Assemble volumes from smaller chunks of disk space
• Can grow (and shrink) volumes by adding and removing chunks,

without moving other data around
• Can allocate chunks from multiple physical disks
• For Linux there are two main choices: LVM and ZFS

Aside: ZFS

• ZFS is a filesystem
• …and a volume manager (vdevs → zpools → zvols)
• …and a RAID system (mirror, raidz1/2/3, dRAID)
• …and does compression, checksumming, bitrot repair
• …and does snapshotting and incremental replication
• It's very powerful, and highly recommended

– When used for VM block storage it can perform very well for some
workloads, poorly for others. Tuning can sometimes help, e.g. recordsize

• For simplicity here we're going to use LVM

LVM Overview

disk 1 disk 2
Physical
Volumes

Volume
Group

Extents

A B CLogical
Volumes

Extent
Mapping

About LVM

• LVM stores data on "physical volumes", which are block devices
• Physical volumes divided into "extents" – usually 4MiB
• Physical volumes combined into "volume groups"
• Logical volume is a collection of extents from one volume group

– You can grow a logical volume by adding extents
– When you remove a LV, its extents are freed and can be re-used

• Small metadata tables map volume offsets to extents, and help
assemble the volume groups correctly

More about LVM

• LVM stores a small amount of metadata
– small table of mappings from logical vols to extents
– volume IDs to allow the physical volumes to be recognized and

assembled into volume groups automatically

• Extent mapping is very quick
• No need to move any data when adding, removing or resizing

volume groups
• Can add new physical volumes to a volume group, to grow it

Accessing logical volumes
 Logical volumes appear as block devices

 /dev/VOLGROUP/VOLUME or
 /dev/mapper/VOLGROUP-VOLUME

 CLI tools in the "lvm2" package, including:
 pvs, pvscan # list all physical vols
 lvs, lvscan # list all logical vols
 lvdisplay # more detail
 lvcreate --size 1G --name foo myvg
 lvextend --size +512M myvg/foo
 lvremove myvg/foo

LVM and snapshots

• By default, LVM allocates all the extents for a logical volume at
the time you create it
– You can't allocate more space than exists in the volume group
– A safe, conservative approach

• LVM can create snapshots of a logical volume, but it's inefficient
– If you modify any block in a snapshot, the whole 4MiB extent has to be

duplicated. This is slow
– For this reason, Proxmox* and Linstor forbid snapshots in regular LVM

• But there is another option which involves "thin provisioning"

* PVE v9 has a technology preview of LVM snapshots via "volume chains",
layering LVM volumes – but it still requires thin provisioning to be efficient

LVM thin provisioning

• Space is allocated "lazily", the first time you write to it
• It's allocated in smaller, 64KiB chunks, which make snapshots

much more efficient
• Space is allocated from within a "thin pool", which is a regular

LVM volume
– internally, a second small LVM volume holds metadata to track all the

chunk allocations, and which snapshots they belong to (if any)

LVM thin provisioning

Thin Pool Vol0 Vol4 Vol5

Regular logical
volumes (not thin)

Volume
Group

Vol1 Vol2 Vol3 Thin provisioned
volumes

Chunks which have
been written to

Points to note

• Vol1/2/3 are still Logical Volumes, but they belong to the thin pool
• Only the chunks which have been written to are allocated
• You are allowed to "overprovision", i.e. create volumes whose

total size is bigger than the thin pool
– Good, because it saves disk space, especially if you have many volumes

which are not full
– Bad, because of the risk of running out of space in the thin pool: writes

will halt until you add space to the thin pool, or delete some data

• Growing a thin pool is easy. Shrinking it is very, very hard
• Remember, you need it for LVM snapshots in Linstor

LVM RAID (dmraid)

• LVM also has built-in features for RAID (mirroring, RAID5,
RAID6…)

• You might not need it if you have RAID underneath LVM, or some
other replication on top of LVM. But it's good to know it's available

• Mirroring is configured at the level of individual logical volumes
– or an entire thin pool (since it is itself a logical volume)

• You can convert a plain volume to mirrored, and vice versa
– except thin pools are best created as mirrored if you want them that way

LVM mirroring

Vol3 Vol4

Non-mirrored
volumes

Two
PVs in
same

volume
group

Vol1

Vol1

Vol2

Vol2

mirrored mirrored

Vol5

LVM Lab

Loose ends: Booting with LVM

Note on physical volumes

• An LVM "physical volume" need not be an entire disk
– It can just be a partition

• Hence you can mix LVM and non-LVM on the same disk
• This is important if you don't have a separate boot disk; the

partition table is needed for booting

Partitioning and LVM: old style

/boot
ext2 LVM PV

Partition table
Logical volumes for

root, swap etc

 Partition table includes Master Boot Record
 sda1 (e.g. 1GB) partition for /boot filesystem (kernel)
 sda2 (rest of disk) is LVM physical volume

Space for more
logical volumes

sda1 sda2

Systems which boot using BIOS and grub2

• The kernel and initrd are stored under /boot
• For older versions of grub, this had to be a regular partition

– Which limits size of /boot, and kernels are getting bigger…

• However, grub2 is able to read from inside LVM
• So newer systems don't need a /boot partition
• Still need a partition for LVM though

– grub2 is installed in the MBR and the blocks following it
– first partition should start at offset 2048

https://askubuntu.com/questions/76095/what-is-the-use-of-boot-lvm-based-in-partitioning

Partitioning and LVM (BIOS & grub2, no /boot)

LVM PV

MBR +
grub2

Logical volumes for
root, swap etc

 blocks 0-2047 for MBR and grub2
 sda1 is LVM's "physical volume"

Space for more
logical volumes

sda1

Systems which boot using UEFI

• Modern PCs need a separate partition for booting using UEFI
firmware instead of BIOS

• This is MS-DOS formatted, and mounted at /boot/efi
• Small is fine (100-250MB) since it doesn't contain the kernel
• You may find some Linux installers still create separate partitions

for /boot and /boot/efi by default

lsblk
nvme0n1 259:0 0 1.8T 0 disk
├─nvme0n1p1 259:2 0 1G 0 part /boot/efi
├─nvme0n1p2 259:3 0 2G 0 part /boot
└─nvme0n1p3 259:4 0 1.8T 0 part
 └─ubuntu--vg-ubuntu—lv 253:0 0 100G 0 lvm /

Partitioning and LVM (UEFI)

/boot/efi
msdos LVM PV

Partition table
Logical volumes for

root, swap etc

 Partition table includes Master Boot Record
 sda1 (e.g. 100MB) partition for /boot/efi
 sda2 (rest of disk) is LVM physical volume

Space for more
logical volumes

sda1 sda2

Whole disk LVM

• You can choose to make the whole data disk be a physical
volume (no partition table at all)

• If so, you need to find another way to boot
– Separate bootable OS disk
– Boot kernel from USB stick
– Boot kernel over network (PXEboot)

• Simpler? You decide

Take care!

• Dealing with logical volumes is like dealing with raw partitions,
with the same dangers

• Easy to write to the wrong volume device!
– especially if LVs have auto-assigned, random-looking names

• Don't mount the same LV on the host and in a virtual machine, or
in multiple VMs, or you'll corrupt the filesystem

Summary of LVM

• LVM breaks disk space into 4MiB extents
• Logical Volumes can be assembled out of any extents in a

Volume Group
• A Volume Group can span multiple Physical Volumes
• Gives the speed of direct-to-disk access without the inflexibility of

partitioning
• Thin pools permit overprovisioning and efficient volume

snapshots, at the risk of running out of space

	Logical Volume Management
	Partitioning: a familiar approach
	How does partitioning work?
	Implementation: translation layer
	Could we use partitions for VM storage?
	Solution: a Logical Volume Manager
	Aside: ZFS
	LVM Overview
	About LVM
	More about LVM
	Accessing logical volumes
	LVM and snapshots
	LVM thin provisioning
	LVM thin provisioning (2)
	Points to note
	LVM RAID (dmraid)
	LVM mirroring
	LVM Lab
	Loose ends: Booting with LVM
	Note on physical volumes
	Partitioning and LVM: old style
	Systems which boot using BIOS and grub2
	Partitioning and LVM (BIOS & grub2, no /boot)
	Systems which boot using UEFI
	Partitioning and LVM (UEFI)
	Whole disk LVM
	Take care!
	Summary of LVM

