
Cloud Monitoring with
Prometheus and Grafana

Some things we need from monitoring

• Servers and/or VMs are up
• Services are up
• Services are performing well (good response times)
• Not about to run out of resources
• Problem notification
• Collect data to help debug issues
• Collect data to plan for capacity growth

Components of a monitoring platform

• Collection of measurements
• Data Storage
• Visualization (graphs)
• Analysis / Alerting
• Inventory (what to monitor)

The Old Way

• Data collection: SNMP
– Standardized for network equipment, but difficult to interface to

for applications
• Data storage: RRDtool

– Designed to minimize storage space by throwing data away
– But heavy use of disk reads and writes (IOPS)

• Visualization, Alerting, Inventory: mostly monolithic tools
– e.g. Cacti, LibreNMS, Zabbix, CheckMK… Graphite

The new way: Time Series Database
(TSDB)

Optimized for working with time series data
– Efficient disk layout: e.g. adjacent samples from the

same time series next to each other
– Compresses extremely well
– Much more efficient use of I/O & CPU than RRDtool

Retains data with full fidelity
– Unlike RRD which is designed to throw data away!

API and query language for open data access

Choosing a time series database

There are many!
InfluxDB, Cassandra, TimescaleDB, VictoriaMetrics, OpenTSDB,
Clickhouse, Yottadb…

We needed to pick one for this course

… so we picked Prometheus

Vibrant community, widely used in both cloud and on-prem

Prometheus architecture

Exporters Prometheus AlertManager

Grafana
Optional
Remote
Storage

SNMP exporter

Lightweight, efficient, and the origin of OpenMetrics

Node exporter

…

Prometheus terminology

Metrics are generated by “exporters”

Central prometheus server collects data by making periodic
HTTP requests to exporters – called “scraping”

Prometheus needs to know which targets to scrape – this is
called “service discovery”

In the simplest case, you just give it a static list of targets
(But there are many other ways, e.g. query AWS API to get a list
of EC2 instances; query Kubernetes API to get a list of pods)

Metrics

Something that you measure

Metrics are always numeric values

Types of metric:
• Gauges (e.g. available disk space, temperature)
• Counters (e.g. bytes received, total time spent working)

– counters only ever INCREASE
• Histograms (e.g. number of requests grouped by latency)

– counters divided into buckets

How do you gather metric data?

Passive measurement, e.g.
– Counters which increment when packets pass through
– Count events or logs matching a pattern

Active measurement, e.g.
– Make a test HTTP request, measure latency
– Generate test traffic and measure throughput (speedtest)

Add instrumentation to applications

Common exporters

• node_exporter: Linux/BSD server metrics
• windows_exporter: Windows server metrics
• snmp_exporter: make SNMP queries, return metrics
• blackbox_exporter: active ICMP/HTTP/DNS tests
• many more available
• many applications have built-in prometheus exporters
• easy to write your own

Metric name

Identifies the type of thing you are measuring
• e.g. "node_filesystem_avail_bytes"

Good metric names show the units and whether it’s a
gauge or a counter
• process_resident_memory_bytes
• promhttp_metric_handler_errors_total
• node_disk_read_time_seconds_total

Units

It's a counter

Time series

Repeated measurements of the same variable over time

Metric
Value

Time

node_filesystem_avail_bytes

Time series

There can be distinct time series for the same metric

Metric
Value

Time

node_filesystem_avail_bytes{instance="nuc1",mountpoint="/"}
node_filesystem_avail_bytes{instance="nuc1",mountpoint="/home"}

Labels

Used to identify a particular time series
• ifHCInOctets{instance="rtr1",ifName="gi0"}
• ifHCInOctets{instance="rtr1",ifName="gi1"}
• ifHCInOctets{instance="rtr2",ifName="gi0"}
• ifHCOutOctets{instance="rtr1",ifName="gi0"}

Every distinct combination of (metric name + labels) defines
a unique time series

Change, add or remove any label => different time series!
* But order of labels doesn't matter

OpenMetrics data format

ifHCInOctets{instance="rtr1",ifName="gi1"} 123456.0

Metric Name Labels Value

That's it!

(Optional
Timestamp)

Other metrics formats exist, e.g. InfluxDB line protocol, Graphite protocol, CSV

Scraping in action

• HTTP request returns a list of OpenMetrics lines
• This is almost ludicrously simple (and easy to debug)

$ curl http://nuc1:9100/metrics
…
HELP node_arp_entries ARP entries by device
TYPE node_arp_entries gauge
node_arp_entries{device="br255"} 12
node_arp_entries{device="isolate"} 1
node_arp_entries{device="lxdbr0"} 2
…

Prometheus time series database

Prometheus has a built-in TSDB, just needs a directory to
write to
--storage.tsdb.path=/var/lib/prometheus/data/

Highly optimized (chunking, write-ahead log etc)

By default, keeps 15 days of data; tune with global flag
--storage.tsdb.retention.time=31d

Also options for long-term archival and remote storage

Querying Prometheus

• Prometheus has its own query language – PromQL
• The simplest query is just a metric name

node_filesystem_avail_bytes

• This returns the values for zero or more time series at a
particular point in time (by default: “now”)

• This is called an “instant vector”
• “vector” because it can return multiple values
• the value of a metric at time T is the most recent sample at or before

time T

PromQL query:
“node_filesystem_avail_bytes”

Instant vector at time T

Metric
Value

Time

node_filesystem_avail_bytes{instance="nuc1",mountpoint="/"} 52428800.0
node_filesystem_avail_bytes{instance="nuc1",mountpoint="/home"} 62914560.0

T

(by default, lookback
maximum 5 minutes)

Graphing

• To create a graph, the instant query is repeated at
multiple instants in time

• The graphing client chooses the start and end time and
the size of the steps

PromQL graph:
“node_filesystem_avail_bytes”

Metric
Value

Time

node_filesystem_avail_bytes{instance="nuc1",mountpoint="/"}
node_filesystem_avail_bytes{instance="nuc1",mountpoint="/home"}

Samples at time intervals

Step
size

PromQL graph:
“node_filesystem_avail_bytes”

Metric
Value

Time

node_filesystem_avail_bytes{instance="nuc1",mountpoint="/"}
node_filesystem_avail_bytes{instance="nuc1",mountpoint="/home"}

Final graph of samples

PromQL filtering: select a subset

• Filter by label values or patterns
node_filesystem_avail_bytes{mountpoint="/home"}
ifHCInOctets{instance=~"rtr[1-2]"}

• Filter by time series value
node_filesystem_avail_bytes < 100000000
• Commonly used for alerting expressions
• Note that this is not a boolean (true/false) result: it filters out values

which don’t meet the criteria, and passes those that do
• If any value is present in the result set, an alert is fired

More PromQL features

• Arithmetic
node_filesystem_avail_bytes / 1024
node_filesystem_avail_bytes / node_filesystem_size_bytes

• Functions across time series
sum(node_filesystem_avail_bytes)
Returns a 1-element instant vector with the total available size

min(node_filesystem_avail_bytes)
Returns a 1-element instant vector with the lowest available size

Range vector queries

• Returns all of the data points within a time window up to
the selected instant, e.g.
ifHCInOctets[10m]

• This allows you to apply functions across a time range
• Converting counters into rates is the most important, e.g.
rate(ifHCInOctets[10m])

• Can also calculate average, max, min etc over time

rate(ifHCInOctets[10m])

Input is a range vector, result is an instant vector

Counter
Value

Time

Average rate, e.g. bytes per second, is calculated between the first
and last points in the range vector. It’s the slope of the dashed line,

except when there are counter resets

T

10 mins

Roadmap from here

• Exporters and Service Discovery
– in the lab you will connect node_exporter, proxmox-pve-

exporter and ceph to Prometheus and Grafana
• Alerting

– alerting rules with PromQL: you can test your expressions in the
web interface

– alertmanager for delivery of notifications
• API consumers (e.g. Grafana)

That's the basics covered!

• Any questions?

	Cloud Monitoring with Prometheus and Grafana
	Some things we need from monitoring
	Components of a monitoring platform
	The Old Way
	The new way: Time Series Database (TSDB)
	Choosing a time series database
	Prometheus architecture
	Prometheus terminology
	Metrics
	How do you gather metric data?
	Common exporters
	Metric name
	Time series
	Time series (2)
	Labels
	OpenMetrics data format
	Scraping in action
	Prometheus time series database
	Querying Prometheus
	PromQL query: “node_filesystem_avail_bytes”
	Graphing
	PromQL graph: “node_filesystem_avail_bytes”
	PromQL graph: “node_filesystem_avail_bytes” (2)
	PromQL filtering: select a subset
	More PromQL features
	Range vector queries
	rate(ifHCInOctets[10m])
	Roadmap from here
	That's the basics covered!

