Cloud Monitoring with
Prometheus and Grafana

UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Some things we need from monitoring

* Servers and/or VMs are up Q%
* Services are up

* Services are performing well (good response times)
* Not about to run out of resources
* Problem notification

* Collect data to help debug issues
* Collect data to plan for capacity growth ..

uuuuuuu

mmmmmmm
DDDDDDD
mmmmmmm
ooooooo

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Components of a monitoring platform

Collection of measurements
Data Storage

Visualization (graphs)
Analysis / Alerting

Inventory (what to monitor)

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

The Old Way

* Data collection: SNMP

— Standardized for network equipment, but difficult to interface to
for applications

* Data storage: RRDtool
— Designed to minimize storage space by throwing data away
— But heavy use of disk reads and writes (IOPS)

* Visualization, Alerting, Inventory: mostly monolithic tools
—e.g. Cacti, LibreNMS, Zabbix, CheckMK... Graphite

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

The new way: Time Series Database
(TSDB)

Optimized for working with time series data

— Efficient disk layout: e.g. adjacent samples from the 2
same time series next to each other

— Compresses extremely well
— Much more efficient use of /0O & CPU than RRDtool

Retains data with full fidelity
— Unlike RRD which is designed to throw data away!

APl and query language for open data access

0 UNIVERSITY OF OREGON NSRC
Hiétwork Starlup Resource Center

Choosing a time series database

There are many!

InfluxDB, Cassandra, TimescaleDB, VictoriaMetrics, OpenTSDB,
Clickhouse, Yofttadb...

We needed to pick one for this course
... SO we picked Prometheus
Vibrant community, widely used in both cloud and on-prem

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Prometheus architecture

Exporters Prometheus AlertManager
— L —
Node exporter Y,
SNMP exporter ? \\
v
Optional
Remote Grafana
Storage

Lightweight, efficient, and the origin of OpenMetrics

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Prometheus terminology

Metrics are generated by “exporters”

Central prometheus server collects data by making periodic
HTTP requests to exporters — called “scraping’

Prometheus needs to know which targets to scrape — this is
called “service discovery”

In the simplest case, you just give it a static list of targets

(But there are many other ways, e.g. query AWS API to get a list
of EC2 instances; query Kubernetes API to get a list of pods)

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Metrics
15.3

Something that you measure
Metrics are always numeric values 0.0 100.0
Types of metric:

* Gauges (e.q. available disk space, temperature)

* Counters (e.q. bytes received, total time spent working)
— counters only ever INCREASE

* Histograms (e.g. number of requests grouped by latency)
— counters divided into buckets

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

How do you gather metric data?

Passive measurement, e.g.
— Counters which increment when packets pass through
— Count events or logs matching a pattern

Active measurement, e.q.
— Make a test HT TP request, measure latency
— Generate test traffic and measure throughput (speedtest)

Add instrumentation to applications

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Common exporters

* node exporter: Linux/BSD server metrics

* windows exporter: Windows server metrics

* snmp_exporter: make SNMP queries, return metrics
* blackbox exporter: active ICMP/HTTP/DNS tests

* many more available

* many applications have built-in prometheus exporters
* easy to write your own

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Metric name

|dentifies the type of thing you are measuring
* e.g. node filesystem avail bytes"
Good metric names show the units and whether it's a
gauge or a counter

* process resident memory ‘bytes
* promhttp_metric_handler_errors_.
* node_disk read_time seconds (Ofah

Units

It's a counter

0 UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Time series

Repeated measurements of the same variable over time

2 2 2
‘/0
Metric
Value

Time
node filesystem avail bytes

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Time series

There can be distinct time series for the same metric

* &

L 4

Metric
Value

Time
node_filesystem avail bytes{instance="nuc1",mountpoint="/"}
node_filesystem_avail bytes{instance="nuc1",mountpoint="/home"}

0 UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Labels

Used to identify a particular time series

* 1fHCInOctets{instance="rtrl", 1fName="g10"}
* 1fHCInOctets{instance="rtrl", 1fName="g1l"}
* 1fHCInOctets{instance="rtr2", 1fName="g10"}
* 1fHCOutOctets{instance="rtrl",1fName="gi0"}

Every distinct combination of (metric name + labels) defines
a unique time series

Change, add or remove any label => different time series!

* But order of labels doesn't matter

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

OpenMetrics data format

1fHCInOctets{instance="rtrl", 1fName="g1l1"} 123456.0

Metric Name Labels Value (Optional

Timestamp)

That's it!

Other metrics formats exist, e.q. InfluxDB line protocol, Graphite protocol, CSV

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Scraping in action

* HTTP request returns a list of OpenMetrics lines
* This is almost ludicrously simple (and easy to debug)

S curl http://nucl:9100/metrics

HELP node arp entries ARP entries by device
TYPE node arp entries gauge

node arp entries{device="br255"} 12

node arp entries{device="1solate"} 1

node arp entries{device="1lxdbr0"} 2

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Prometheus time series database

Prometheus has a built-in TSDB, just needs a directory to
write to

--storage.tsdb.path=/var/lib/prometheus/data/
Highly optimized (chunking, write-ahead log etc)
By default, keeps 15 days of data; tune with global flag

-—-storage.tsdb.retention.time=31d

Also options for long-term archival and remote storage

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Querying Prometheus

* Prometheus has its own query language — PromQL
* The simplest query is just a metric name
node filesystem availl bytes

* This returns the values for zero or more time series at a
particular point in time (by default: “now”)

* This is called an “instant vector”

* ‘“vector” because it can return multiple values

* the value of a metric at time T is the most recent sample at or before
time T

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

PromQL query:
‘node_filesystem avail bytes”
Instant vector at time T

2 (by default, lookback

maximum 5 minutes)
Metric L

Value

Time T
node_filesystem avail bytes{instance="nuc1",mountpoint="/"} 52428800.0
node_filesystem avail bytes{instance="nuc1",mountpoint="/home"} 62914560.0

0 UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Graphing

* To create a graph, the instant query is repeated at
multiple instants in time

* The graphing client chooses the start and end time and
the size of the steps

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

PromQL graph:
‘node_filesystem avail bytes”
Samples at time intervals

o 00— * 4
o I
NP SO RS
L) : . : : :
Metric : i I #---@
Value o AN P-----€ ’ :
E. S.tepl
|SIZG:
Time

node_filesystem avail bytes{instance="nuc1",mountpoint="/"}
node_filesystem_avail bytes{instance="nuc1",mountpoint="/home"}

0 UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

PromQL graph:
‘node_filesystem avail bytes”
Final graph of samples

Metric
Value o A 4

Time
node_filesystem avail bytes{instance="nuc1",mountpoint="/"}
node_filesystem_avail bytes{instance="nuc1",mountpoint="/home"}

0 UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

PromQL filtering: select a subset

* Filter by label values or patterns
node filesystem avail bytes{mountpoint="/home"}
1fHCInOctets{instance=~"rtr[1-2]"}

* Filter by time series value
node filesystem availl bytes < 100000000
* Commonly used for alerting expressions

* Note that this is not a boolean (true/false) result: it filters out values
which don’t meet the criteria, and passes those that do

* If any value is present in the result set, an alert is fired

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

More PromQL features

* Arithmetic

node filesystem avail bytes / 1024
node filesystem avail bytes / node filesystem size bytes

* Functions across time series

sum (node filesystem availl bytes)
Returns a 1-element instant vector with the total available size

min (node filesystem avail bytes)
Returns a 1-element instant vector with the lowest available size

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Range vector queries

* Returns all of the data points within a time window up to
the selected instant, e.qg.
1fHCInOctets [10m]

* This allows you to apply functions across a time range

* Converting counters into rates is the most important, e.g.
rate (LfHCInOctets[10m])

* Can also calculate average, max, min etc over time

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

rate(ifHCInOctets[10m])

Input is a range vector, result is an instant vector

4

Counter
Value

4

i‘ 10 mins 'i

Time T

Average rate, e.g. bytes per second, is calculated between the first
and /ast points in the range vector. It's the slope of the dashed line,
except when there are counter resets

0 UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

Roadmap from here

* Exporters and Service Discovery

—in the lab you will connect node_exporter, proxmox-pve-
exporter and ceph to Prometheus and Grafana

* Alerting

— alerting rules with PromQL.: you can test your expressions in the
web interface

— alertmanager for delivery of notifications
* API consumers (e.g. Grafana)

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

That's the basics covered!

* Any questions?

O UNIVERSITY OF OREGON NSRC
Hetwark Starlup Resource Center

	Cloud Monitoring with Prometheus and Grafana
	Some things we need from monitoring
	Components of a monitoring platform
	The Old Way
	The new way: Time Series Database (TSDB)
	Choosing a time series database
	Prometheus architecture
	Prometheus terminology
	Metrics
	How do you gather metric data?
	Common exporters
	Metric name
	Time series
	Time series (2)
	Labels
	OpenMetrics data format
	Scraping in action
	Prometheus time series database
	Querying Prometheus
	PromQL query: “node_filesystem_avail_bytes”
	Graphing
	PromQL graph: “node_filesystem_avail_bytes”
	PromQL graph: “node_filesystem_avail_bytes” (2)
	PromQL filtering: select a subset
	More PromQL features
	Range vector queries
	rate(ifHCInOctets[10m])
	Roadmap from here
	That's the basics covered!

