Physical Storage

Cloud and Virtualization Workshop

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Overview
What fails first?

— Drives, fans, power
— We review options for storage and hardware

Physical storage options and configuration

— Partitioning vs. logical volume manager
— Disk image files and formats
— ZFS with ZVOLs

Physical storage failures and options
— RAID
- ZFS
— Monitoring status

Confronting failure

— Drive errors

— Drive type

— Writing mechanisms
— Detecting failure

2+ dead drives 2024

Dead



Using physical storage

* Storage is the critical component of a virtual machine: persisting
the VM's state and storing your application data

* Choice of storage affects the performance, cost and reliability of
your system

* Storage is the part which fails the most often™ so you will have to
design for this

* Quoted capacities are powers of 10
— e.g. 500GB = 500,000,000,000 bytes

* Dual power supplies are for redundant power feeds, not because power supplies are particularly unreliable!

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Hard drives (HDD)

* Spinning metal platters with moveable read/write heads

— Slow to seek to data (random access): 150 ~ 200 seeks per second.
Higher rotational speed improves this a little.

— Fast to stream sequential data
— High capacity, low cost per byte
* Usual form factors: 3.5", 2.5"

* Usual interfaces: SATA, SAS*

*More details at https://simple.wikipedia.org/wiki/Serial Attached SCSI

0 UNIVERSITY OF OREGON NSRC

Network Startup Resource Center



https://simple.wikipedia.org/wiki/Serial_Attached_SCSI

Solid state drives (SSD, Flash)

* Silicon memory cells
— No moving parts, but wear out after repeated writes
— Very fast random access, fast data transfer
— Low power consumption

* Variety of form factors and interfaces
— 2.5", SATA/ SAS

— M.2, SATA T
— M.2, NVMe g~
— U.2, NVMe

UNIVERSITY OF OREGON NSRC

Network Startup Res:

O




Block storage internals

HDDs and SSDs appear the same to the host system

They are "Linear Block Accessible": read block N, write block N
— hard drives map this internally to track / head / sector location
— can also remap individual bad blocks to new locations

Each block is usually 512 or 4096 bytes
— 4096 bytes now common, reduces gaps between blocks on HDDs

SSD internally works on "pages" of typically 128KB

— You can write less than this, but the SSD will copy the whole 128KB to an
empty page. Old pages erased in the background (garbage collection)

— Controller spreads wear across flash pages as evenly as it can

UNIVERSITY OF OREGON NSRC

O




O

Interfacing to block storage

Usually via a "Host Based Adapter” (HBA) or a RAID controller
Different versions of interfaces have different speeds
—e.g.SATA1/2/3=1.5/3/6 Gbps. Backwards compatible.
Multiple drives can connect to the same interface

— via "multiplier” or "expander” backplanes; they share the bandwidth

Multiple overlapping requests can be sent to the same drive
— For HDD: allows it to optimise head seeking

— For SSD: allows multiple controller channels to be active (typ. 4 or 8)
— Max total throughput when there is concurrency in your workload

UNIVERSITY OF OREGON NSRC




O

Filesystems

To make block storage useful, the OS creates a filesystem
— Organizes block storage into Files, Directories, and free space
— Provides higher level operations like "open file", "read", "write", "close"

Examples
— Linux: ext4, XFS, ZFS
— Windows: NTFS

User applications access the filesystem, not the block device

Filesystem expects the block device to have a fixed size
— Resizing is possible, but it is a special operation

UNIVERSITY OF OREGON NSRC




Mounting filesystems

* Writing the initial data structure to create an empty filesystem is

called "formatting"”, "making" or "building" the filesystem

* The OS "mounts" the filesystem to read in the metadata and start
using it to read and write files

* "Unmounting" the filesystem flushes out any remaining changes

* Two OSes must not mount the same block device at the same
time, or data corruption is guaranteed! *

* Unless you are using an esoteric cluster filesystem e.g. GFS, OCFS2

0 UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee




Drive failures and redundancy

UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee

O




Dealing with drive failures

Both HDDs and SSDs do fail, quite frequently

Different failure modes, including:

— Total failure of drive (common with SSDs)

— Failure to read parts of drive (common with HDDs)

— Succeeds only after multiple retries (can slow the whole system down)

Drives validate each block with a checksum (CRC)
— Means they should return an error, rather than incorrect data

To keep running, additional copies of data must be available
* On one server: RAID = "Redundant Array of Inexpensive Drives"

O

UNIVERSITY OF OREGON NSRC




O

Mirroring, aka "RAID1"

Store identical copies of each block on two or more drives

Fail to read from drive 1? Then retry from drive 2

— and write the data back to drive 1, so it can replace the failed block

For writing, slightly slower than a single drive
For reading, it's faster than a single drive

— You have two copies of everything, so can do two reads simultaneously

UNIVERSITY OF OREGON

write to both

read from either




O

Other RAID levels

RAIDS: Parity RAID. Use N+1 drives to store N blocks of data

— the extra block is calculated across the N blocks
— on loss of any single drive, data can be reconstructed from the others
— lower storage overhead than mirroring, but very poor write performance

RAIDG6: Use N+2 drives to store N blocks of data

— similar, but can survive loss of any two drives

RAIDO: striping

— Faster sequential access as N blocks are spread across N drives
— NO REDUNDANCY. Loss of any one drive loses the entire dataset!

RAID10 combines mirroring with striping (speed and redundancy)

*Nicely detailed explanations and diagrams at https://phoenixnap.com/kb/raid-levels-and-types

UNIVERSITY OF OREGON NSRC



https://phoenixnap.com/kb/raid-levels-and-types

O

Another option: ZFS

ZFS is a filesystem, volume manager and RAID combined
Supports mirroring, raidz (=RAIDYS), raidz2 (=RAIDG6), raidz3
Better write performance than traditional parity RAID

Unlike other options, ZFS can detect and correct bad data
— e.qg. if two mirrors have differing data, it will pick the correct one

Extremely strong data integrity guarantees

— Meaning: if you read it from ZFS, you can be sure it's correct

— However, it's still important to keep good backups

— Interruption to multiple drives can cause total, irrecoverable data loss

UNIVERSITY OF OREGON NSRC




How RAID is implemented

* "Software RAID": OS uses directly attached disks (e.g. HBA)
— Linux: mdraid, dmraid (works with LVM), ZFS raidz
— Modern CPUs are very fast, and code is highly optimized

* "Hardware RAID": pushes all the RAID logic into a controller card
— Presents the whole array as one or more virtual volumes
— Maybe faster? (arguable)

— More magic, less visibility, special management tools required, proprietary
metadata formats. Keep an identical spare controller card!

* If you're using ZFS, you must use HBA not RAID controller, or you
lose ZFS's ability to repair data

0 UNIVERSITY OF OREGON NSRC




RAID scrubbing

* If a disk sector goes bad, you won't know about it until you next
read it. If all copies have gone bad, you're toast.

* Scrubbing: periodically read across the whole drive set, checking
for reads that fail, and rewriting from redundant copies

* ZFS can also detect and repair "bit rot": when the wrong data is
present, or the parity copies disagree
— It's because ZFS stores checksums of all blocks in its data structures
— If data can't be recovered, it reports on which files are affected
— ZFS is the only grown-up filesystem to do this (btrfs doesn't count)

0 UNIVERSITY OF OREGON NSRC



https://arstechnica.com/gadgets/2021/09/examining-btrfs-linuxs-perpetually-half-finished-filesystem/

Monitoring and repair

* Properly monitoring your array is critical
— To get notification of failed drives that need replacing
— To identify drives with long latency or other issues
— Use a monitoring system (nagios plugins, prometheus/node_exporter, ...)

* Replacing a drive has to rewrite all data ("resilvering")
— has a big performance impact, especially with parity RAID
— can take a long time to complete
— risk of data loss if another drive fails while this is taking place

— risk is higher if you build arrays out of large drives, and/or many drives in
a single array

— Increasing an entire array size with new disks can take a while

0 UNIVERSITY OF OREGON NSRC




O

SMART monitoring

Can give some advance warning of impending drive failures
Returns a wide range of stats from the drive; not easy to interpret
— There is a global "Health OK"; if this says not OK, then replace

Can request short and long self-tests on the drive

— Long self-test can take hours to read the whole disk surface

RAID controllers often make it difficult to access the drives
directly to get SMART data

— This is a big advantage of HBAs and software RAID

UNIVERSITY OF OREGON NSRC




Warning: RAID is not backup!

RAID is only for high availability

— i.e. less downtime when a drive fails

Multiple or cascading drive failures are not unknown

— e.g. if an HBA card serving multiple drives fails

— can cause loss of the entire array

RAID does not protect against filesystem corruption

— Consider RAID 1 (mirror), corrupt data is just copied twice...
RAID does not protect against "fat fingers" or malware
— Any data destruction is instantly replicated

0 UNIVERSITY OF OREGON NSRC




Questions?

UNIVERSITY OF OREGON NSRC

Network Startup Resource Center



Error Recovery Control*

* Some desktop hard drives perform infinite retries on failed read

— If used with RAID, a single bad sector causes the entire drive to lock up
and be kicked out of the array!

* ERC means that drive gives up after a few seconds

— RAID system can then read the data from other drive(s), and write it back
to the bad drive, repairing the data

* Essential feature. Test each drive model before buying
— ATA: smartctl -1 scterc /dev/sda
— SAS: sdparm --get=RTL /dev/sda

* Also known as Time Limited Error Recovery (TLER) or Command Completion Time Limit (CCTL)

0 UNIVERSITY OF OREGON NSRC




What sort of drives should you buy?

* "Enterprise"” drives have similar failure rates to consumer drives!
— They might perform better, be better mechanically isolated, or last longer
— They will have ERC (but some consumer drives do to0)
— Compromise: consider consumer "NAS" drives

* For SSDs: look at endurance figures

— Triple Level Cell (TLC) and Quad Level Cell (QLC) store more bits in each
cell, but have lower write endurance

* Under heavy write load, SSDs may start thermal throttling
— Drastically reduces performance (factor of 10 or more!)
— Test under real workloads, consider heatsinks and airflow improvements

0 UNIVERSITY OF OREGON NSRC




TRIM / Discard

* When you delete a file, the directory is updated, but the data
blocks remain on disk

— They are added to free space list, and can be reused later

* This means that SSDs are unable to garbage collect flash pages
— They don't know that this data is no longer required
— Smaller pool of free pages means less efficient operation

* Solution: "TRIM" signals to the drive that block can be discarded
— Some filesystems can do this online (be careful of bugs!)

— Linux utility "fstrim" can be run periodically to free unused space
— Also works with thin-provisioned VM images, if enabled in hypervisor

0 UNIVERSITY OF OREGON NSRC




Consistency, performance, and caching

* When the OS or application writes data, these writes may wait
around in RAM before reaching disk, and/or be reordered
— in the guest OS (VFS cache) — as "dirty blocks" to be written later
— in the hypervisor or host OS
— in the HBA or RAID controller
— in the drive itself

* If the power is pulled (or VM uncleanly killed) at the wrong time,
only some of these blocks will have made it to disk

* Opportunity for filesystem to end up in an invalid state

0 UNIVERSITY OF OREGON NSRC

eeeeeeeeeeeeeeeeeeeeeeeeeeee




Option 1: Write-through

* For every write, wait until the drive has confirmed it has been
persisted to disk before writing the next block

* OS writes in an order which ensures the filesystem is always in a
consistent state

* Problem: extremely slow

— latency of waiting for each write to complete
— loses optimization opportunities, e.g. combining adjacent writes

0 UNIVERSITY OF OREGON NSRC




Option 2: Write-back

* Acknowledge writes as soon as they are in RAM

* Explicitly flush to disk at strategic points ("write barriers")
— Example: journalling filesystem
— write data to a journal, flush it, then write the data to final location
— if data wrote to the journal, missing writes can be replayed on next startup
— if data didn't fully write to journal, then ignore it. Partial data is lost, but at

least the filesystem is in a consistent state (all-or-nothing)

* When flushing, OS waits for write barrier to complete before

writing more data

0 UNIVERSITY OF OREGON NSRC




Importance of write barriers

Write barriers work very well, if they are implemented end-to-end
— i.e. all the way from guest, through hypervisor/LVM/RAID layers, to disk
Unfortunately, some badly-configured VM hosts tell lies

— They tell the guest that the write has completed, before it really has

— Makes write performance better, but risky for data integrity

Some hard drives lie too

— May be configurable with hdparm

Some RAID controllers use battery-backed RAM so they can
safely acknowledge writes before they have completed

— to work around the poor write performance of RAID5/RAID6

UNIVERSITY OF OREGON NSRC

O



https://wiki.archlinux.org/title/hdparm#Write_cache

O

Recommendations

Don't disable write barriers (e.g. gemu's "unsafe" mode)
— except for temporary VMs where you don't care about data loss

Check your guest OSes use write barriers

— if they don't, then you'll need to enable write-through in hypervisor
Check your hardware implements write barriers correctly

— if unsure, turn off write caches completely, especially in SATA drives

Try to avoid unnecessary power loss on VM hosts, and unclean
shutdowns of guests

UNIVERSITY OF OREGON NSRC




Snapshots

* Taking a snapshot of a VM disk while it is running can also lead to
Inconsistencies

— There can be data in RAM which has been partially flushed to disk
* Solution 1: make a "live" snapshot which includes the RAM state
— Considerably larger (could be many GiB) and slower

* Solution 2: signal to the VM to freeze filesystem & flush to disk
— Install "gemu-guest-agent” inside the VM, and enable in Proxmox

— Recommended!
T ST Udls
& Cloud-Init
SMBIOS settings (type1) uuid=8903894c-b30d-4589-9e8b-4537 160i6fch
£ Options | QEMU Guest Agent Enabled
Task History Protection Mo

UNIVERSITY OF OREGON NSRC

Network Startup Res

O




The End!

UNIVERSITY OF OREGON NSRC

Network Startup Resource Center



	Physical Storage
	Overview
	Using physical storage
	Hard drives (HDD)
	Solid state drives (SSD, Flash)
	Block storage internals
	Interfacing to block storage
	Filesystems
	Mounting filesystems
	Drive failures and redundancy
	Dealing with drive failures
	Mirroring, aka "RAID1"
	Other RAID levels
	Another option: ZFS
	How RAID is implemented
	RAID scrubbing
	Monitoring and repair
	SMART monitoring
	Warning: RAID is not backup!
	Questions?
	Error Recovery Control*
	What sort of drives should you buy?
	TRIM / Discard
	Consistency, performance, and caching
	Option 1: Write-through
	Option 2: Write-back
	Importance of write barriers
	Recommendations
	Snapshots
	The End!

