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Overview
What fails first?

— Drives, fans, power
— We review options for storage and hardware

Physical storage options and configuration

— Partitioning vs. logical volume manager
— Disk image files and formats
— ZFS with ZVOLs

Physical storage failures and options
— RAID
- ZFS
— Monitoring status

Confronting failure

— Drive errors

— Drive type

— Writing mechanisms
— Detecting failure

2+ dead drives 2024

Dead



Using physical storage

* Storage is the critical component of a virtual machine: persisting
the VM's state and storing your application data

* Choice of storage affects the performance, cost and reliability of
your system

* Storage is the part which fails the most often™ so you will have to
design for this

* Quoted capacities are powers of 10
— e.g. 500GB = 500,000,000,000 bytes

* Dual power supplies are for redundant power feeds, not because power supplies are particularly unreliable!
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Hard drives (HDD)

* Spinning metal platters with moveable read/write heads

— Slow to seek to data (random access): 150 ~ 200 seeks per second.
Higher rotational speed improves this a little.

— Fast to stream sequential data
— High capacity, low cost per byte
* Usual form factors: 3.5", 2.5"

* Usual interfaces: SATA, SAS*

*More details at https://simple.wikipedia.org/wiki/Serial Attached SCSI
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https://simple.wikipedia.org/wiki/Serial_Attached_SCSI

Solid state drives (SSD, Flash)

* Silicon memory cells
— No moving parts, but wear out after repeated writes
— Very fast random access, fast data transfer
— Low power consumption

* Variety of form factors and interfaces
— 2.5", SATA/ SAS

— M.2, SATA T
— M.2, NVMe g~
— U.2, NVMe
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Block storage internals

HDDs and SSDs appear the same to the host system

They are "Linear Block Accessible": read block N, write block N
— hard drives map this internally to track / head / sector location
— can also remap individual bad blocks to new locations

Each block is usually 512 or 4096 bytes
— 4096 bytes now common, reduces gaps between blocks on HDDs

SSD internally works on "pages" of typically 128KB

— You can write less than this, but the SSD will copy the whole 128KB to an
empty page. Old pages erased in the background (garbage collection)

— Controller spreads wear across flash pages as evenly as it can
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Interfacing to block storage

Usually via a "Host Based Adapter” (HBA) or a RAID controller
Different versions of interfaces have different speeds
—e.g.SATA1/2/3=1.5/3/6 Gbps. Backwards compatible.
Multiple drives can connect to the same interface

— via "multiplier” or "expander” backplanes; they share the bandwidth

Multiple overlapping requests can be sent to the same drive
— For HDD: allows it to optimise head seeking

— For SSD: allows multiple controller channels to be active (typ. 4 or 8)
— Max total throughput when there is concurrency in your workload
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Filesystems

To make block storage useful, the OS creates a filesystem
— Organizes block storage into Files, Directories, and free space
— Provides higher level operations like "open file", "read", "write", "close"

Examples
— Linux: ext4, XFS, ZFS
— Windows: NTFS

User applications access the filesystem, not the block device

Filesystem expects the block device to have a fixed size
— Resizing is possible, but it is a special operation
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Mounting filesystems

* Writing the initial data structure to create an empty filesystem is

called "formatting"”, "making" or "building" the filesystem

* The OS "mounts" the filesystem to read in the metadata and start
using it to read and write files

* "Unmounting" the filesystem flushes out any remaining changes

* Two OSes must not mount the same block device at the same
time, or data corruption is guaranteed! *

* Unless you are using an esoteric cluster filesystem e.g. GFS, OCFS2
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Drive failures and redundancy
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Dealing with drive failures

Both HDDs and SSDs do fail, quite frequently

Different failure modes, including:

— Total failure of drive (common with SSDs)

— Failure to read parts of drive (common with HDDs)

— Succeeds only after multiple retries (can slow the whole system down)

Drives validate each block with a checksum (CRC)
— Means they should return an error, rather than incorrect data

To keep running, additional copies of data must be available
* On one server: RAID = "Redundant Array of Inexpensive Drives"
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Mirroring, aka "RAID1"

Store identical copies of each block on two or more drives

Fail to read from drive 1? Then retry from drive 2

— and write the data back to drive 1, so it can replace the failed block

For writing, slightly slower than a single drive
For reading, it's faster than a single drive

— You have two copies of everything, so can do two reads simultaneously
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Other RAID levels

RAIDS: Parity RAID. Use N+1 drives to store N blocks of data

— the extra block is calculated across the N blocks
— on loss of any single drive, data can be reconstructed from the others
— lower storage overhead than mirroring, but very poor write performance

RAIDG6: Use N+2 drives to store N blocks of data

— similar, but can survive loss of any two drives

RAIDO: striping

— Faster sequential access as N blocks are spread across N drives
— NO REDUNDANCY. Loss of any one drive loses the entire dataset!

RAID10 combines mirroring with striping (speed and redundancy)

*Nicely detailed explanations and diagrams at https://phoenixnap.com/kb/raid-levels-and-types
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Another option: ZFS

ZFS is a filesystem, volume manager and RAID combined
Supports mirroring, raidz (=RAIDYS), raidz2 (=RAIDG6), raidz3
Better write performance than traditional parity RAID

Unlike other options, ZFS can detect and correct bad data
— e.qg. if two mirrors have differing data, it will pick the correct one

Extremely strong data integrity guarantees

— Meaning: if you read it from ZFS, you can be sure it's correct

— However, it's still important to keep good backups

— Interruption to multiple drives can cause total, irrecoverable data loss
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How RAID is implemented

* "Software RAID": OS uses directly attached disks (e.g. HBA)
— Linux: mdraid, dmraid (works with LVM), ZFS raidz
— Modern CPUs are very fast, and code is highly optimized

* "Hardware RAID": pushes all the RAID logic into a controller card
— Presents the whole array as one or more virtual volumes
— Maybe faster? (arguable)

— More magic, less visibility, special management tools required, proprietary
metadata formats. Keep an identical spare controller card!

* If you're using ZFS, you must use HBA not RAID controller, or you
lose ZFS's ability to repair data
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RAID scrubbing

* If a disk sector goes bad, you won't know about it until you next
read it. If all copies have gone bad, you're toast.

* Scrubbing: periodically read across the whole drive set, checking
for reads that fail, and rewriting from redundant copies

* ZFS can also detect and repair "bit rot": when the wrong data is
present, or the parity copies disagree
— It's because ZFS stores checksums of all blocks in its data structures
— If data can't be recovered, it reports on which files are affected
— ZFS is the only grown-up filesystem to do this (btrfs doesn't count)
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Monitoring and repair

* Properly monitoring your array is critical
— To get notification of failed drives that need replacing
— To identify drives with long latency or other issues
— Use a monitoring system (nagios plugins, prometheus/node_exporter, ...)

* Replacing a drive has to rewrite all data ("resilvering")
— has a big performance impact, especially with parity RAID
— can take a long time to complete
— risk of data loss if another drive fails while this is taking place

— risk is higher if you build arrays out of large drives, and/or many drives in
a single array

— Increasing an entire array size with new disks can take a while
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SMART monitoring

Can give some advance warning of impending drive failures
Returns a wide range of stats from the drive; not easy to interpret
— There is a global "Health OK"; if this says not OK, then replace

Can request short and long self-tests on the drive

— Long self-test can take hours to read the whole disk surface

RAID controllers often make it difficult to access the drives
directly to get SMART data

— This is a big advantage of HBAs and software RAID
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Warning: RAID is not backup!

RAID is only for high availability

— i.e. less downtime when a drive fails

Multiple or cascading drive failures are not unknown

— e.g. if an HBA card serving multiple drives fails

— can cause loss of the entire array

RAID does not protect against filesystem corruption

— Consider RAID 1 (mirror), corrupt data is just copied twice...
RAID does not protect against "fat fingers" or malware
— Any data destruction is instantly replicated
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Questions?
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Error Recovery Control*

* Some desktop hard drives perform infinite retries on failed read

— If used with RAID, a single bad sector causes the entire drive to lock up
and be kicked out of the array!

* ERC means that drive gives up after a few seconds

— RAID system can then read the data from other drive(s), and write it back
to the bad drive, repairing the data

* Essential feature. Test each drive model before buying
— ATA: smartctl -1 scterc /dev/sda
— SAS: sdparm --get=RTL /dev/sda

* Also known as Time Limited Error Recovery (TLER) or Command Completion Time Limit (CCTL)
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What sort of drives should you buy?

* "Enterprise"” drives have similar failure rates to consumer drives!
— They might perform better, be better mechanically isolated, or last longer
— They will have ERC (but some consumer drives do to0)
— Compromise: consider consumer "NAS" drives

* For SSDs: look at endurance figures

— Triple Level Cell (TLC) and Quad Level Cell (QLC) store more bits in each
cell, but have lower write endurance

* Under heavy write load, SSDs may start thermal throttling
— Drastically reduces performance (factor of 10 or more!)
— Test under real workloads, consider heatsinks and airflow improvements
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TRIM / Discard

* When you delete a file, the directory is updated, but the data
blocks remain on disk

— They are added to free space list, and can be reused later

* This means that SSDs are unable to garbage collect flash pages
— They don't know that this data is no longer required
— Smaller pool of free pages means less efficient operation

* Solution: "TRIM" signals to the drive that block can be discarded
— Some filesystems can do this online (be careful of bugs!)

— Linux utility "fstrim" can be run periodically to free unused space
— Also works with thin-provisioned VM images, if enabled in hypervisor

0 UNIVERSITY OF OREGON NSRC




Consistency, performance, and caching

* When the OS or application writes data, these writes may wait
around in RAM before reaching disk, and/or be reordered
— in the guest OS (VFS cache) — as "dirty blocks" to be written later
— in the hypervisor or host OS
— in the HBA or RAID controller
— in the drive itself

* If the power is pulled (or VM uncleanly killed) at the wrong time,
only some of these blocks will have made it to disk

* Opportunity for filesystem to end up in an invalid state
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Option 1: Write-through

* For every write, wait until the drive has confirmed it has been
persisted to disk before writing the next block

* OS writes in an order which ensures the filesystem is always in a
consistent state

* Problem: extremely slow

— latency of waiting for each write to complete
— loses optimization opportunities, e.g. combining adjacent writes
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Option 2: Write-back

* Acknowledge writes as soon as they are in RAM

* Explicitly flush to disk at strategic points ("write barriers")
— Example: journalling filesystem
— write data to a journal, flush it, then write the data to final location
— if data wrote to the journal, missing writes can be replayed on next startup
— if data didn't fully write to journal, then ignore it. Partial data is lost, but at

least the filesystem is in a consistent state (all-or-nothing)

* When flushing, OS waits for write barrier to complete before

writing more data
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Importance of write barriers

Write barriers work very well, if they are implemented end-to-end
— i.e. all the way from guest, through hypervisor/LVM/RAID layers, to disk
Unfortunately, some badly-configured VM hosts tell lies

— They tell the guest that the write has completed, before it really has

— Makes write performance better, but risky for data integrity

Some hard drives lie too

— May be configurable with hdparm

Some RAID controllers use battery-backed RAM so they can
safely acknowledge writes before they have completed

— to work around the poor write performance of RAID5/RAID6
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Recommendations

Don't disable write barriers (e.g. gemu's "unsafe" mode)
— except for temporary VMs where you don't care about data loss

Check your guest OSes use write barriers

— if they don't, then you'll need to enable write-through in hypervisor
Check your hardware implements write barriers correctly

— if unsure, turn off write caches completely, especially in SATA drives

Try to avoid unnecessary power loss on VM hosts, and unclean
shutdowns of guests
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Snapshots

* Taking a snapshot of a VM disk while it is running can also lead to
Inconsistencies

— There can be data in RAM which has been partially flushed to disk
* Solution 1: make a "live" snapshot which includes the RAM state
— Considerably larger (could be many GiB) and slower

* Solution 2: signal to the VM to freeze filesystem & flush to disk
— Install "gemu-guest-agent” inside the VM, and enable in Proxmox

— Recommended!
T ST Udls
& Cloud-Init
SMBIOS settings (type1) uuid=8903894c-b30d-4589-9e8b-4537 160i6fch
£ Options | QEMU Guest Agent Enabled
Task History Protection Mo
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The End!
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