
SSH and keys

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Passwords are bad!

 A large proportion of security failures are due to passwords

 Users choose poor passwords

 Users write them down or share them

 Passwords can be guessed or brute-forced

 Passwords can be sniffed or key-logged

 People hate forced password changes and password complexity tests,
and will work around them

SSH and system administration

 SSH gives you remote command-line access to systems

 Therefore a very attractive target for attackers

 Traffic is encrypted, which at least makes it hard to sniff
passwords off the network

 Much better than telnet

 But in addition, SSH allows you to use cryptographic keys
instead of passwords

Using crypto keys with SSH

• 1. Generate a Private/Public key pair

• 2. Copy the public key onto each of the systems you want to be
able to log into

 It goes into $HOME/.ssh/authorized_keys

• 3. Log in with ssh, using your private key to prove your identity to
the other system, instead of a password

User authentication with keys

Out
of

Band
Private

/home/xxx/.ssh/
authorized_keys

Public

Public

Connect

User proves they possess
the matching private key

Generating a key pair
 This is a one-time operation
 For Linux, macOS, and Windows WSL2: use ssh-keygen
 For Windows/putty: use puttygen.exe
 There are three different key types currently: rsa, ecdsa, ed25519

 ecdsa and ed25519 are newest and fastest
 If you need to use RSA, choose a key length of 2048 or 3072 bits

(e.g. -t rsa -b 2048)
 You get a private key and a related public key

OpenSSH public key looks like this

 Safe for copy-paste (but beware line wrap)

 puttygen has a different native format but can
also export the above format

 One very long line of text

ssh-rsa AAAAB3NzaC1..... you@yourmachine

Key type Key data Label
(identifier)

Understand the difference!
 Your private key is like the Crown Jewels
 Your public key is like a photograph of the Crown Jewels
 Which of these would you be happy to send via the postal

service? :-)
 Never give your private key to anyone else
 Never send your private key via E-mail

 Should you need to transfer it, do so via a secure channel like scp or
sftp

Keeping your private key safe
 Keep it on the machine where it was generated

 usually your laptop
 plus a secure backup, e.g. USB key in a safe

 Protect it with a strong passphrase
 The key is actually stored encrypted on your hard disk; the

passphrase decrypts it
 So an attacker would need both to steal the key file and know your

passphrase
 "2-factor authentication": something you have, and something you know

Disabling passwords over SSH

 Once you have key authentication working, you can disable
fallback to password auth

editor /etc/ssh/sshd_config

PasswordAuthentication no
ChallengeResponseAuthentication no

PermitRootLogin without-password
–- or --
PermitRootLogin no

systemctl restart ssh

Man-in-the-middle attacks

 How do you know you did not actually connect to someone else,
who is decrypting your traffic and re-encrypting it to the remote
host?

;qfhhlqwcwiefxweix iw
xfenowixfuewg2384

xehlhxn j;ijf ure hq
ewioihbyugi’owef;glgu

Host keys

 Solution: the host you are connecting to, also has its own key

 The host proves its own identity to you each time you connect

 The first time you connect, you will be shown the host's
"fingerprint" (hash of public key)

 If you've ever used SSH, even with passwords, you will have seen this
prompt

 Future connections will check that the same host key is seen

Host key verification

 If later there is a man-in-the-middle, on connection your ssh
client will see the MITM's key instead of the host's key

 It won't match, you will get an error and the connection is
dropped

 Questions:

 What happens if you reinstall the host's OS?

 What effect might this have on your users?

 How are you going to deal with it?

Questions?

SSH Agent

 Having to enter your passphrase every time you log in is tedious

 However there is a simple solution to this: the SSH Agent

 Once you have decrypted your private key once with your
passphrase, the Agent keeps the decrypted key in RAM

 Subsequent logins don't prompt you at all

 This makes SSH + keys very convenient!

Installing SSH agent

 For Windows/putty: download pageant.exe

 Start it

 Select your private key file

 Enter your passphrase

 macOS: already has it

 Linux with Unity/Gnome/KDE: already has it

Multi-hop authentication

 Sometimes it is necessary to ssh into host X, and then ssh from
host X to host Y

 e.g. due to network ACLs

 or because host Y is on a private IP address

 or because you are running some sysadmin tool on host X which
needs to log in to host Y

ssh ssh

host X host Y

Agent forwarding

 You may be tempted to copy your private key from your laptop to
host X, but DON'T!

 There is a better way: turn on Agent Forwarding when you
connect to host X (flag "-A")

 Host Y will try to authenticate from host X, and host X will relay
the request back to the origin

ssh ssh

Private

Better: Jump Host

• Don't use Agent Forwarding via untrusted hosts
– anyone who has root on host X can talk to your agent socket,

and use your private key to login elsewhere
• A more secure alternative is "jump host" (-J)

ssh -J hostX hostY
• Makes an ssh connection to host X, and through that

opens a TCP tunnel to host Y
• SSH connection to host Y is protected end-to-end

SSH authentication for scheduled tasks

• machine X logs in by itself to machine Y to perform tasks
– e.g. system management tools like Ansible Tower / AWX

• Option 1: private key on machine X without passphrase
– Lock that system down very tightly!

• Option 2: private key with ssh-agent
– On bootup, you'll have to run ssh-add to enter the passphrase,

before the key can be used
• Option 3: SSH certificates (advanced)

Summary
 SSH + key is very secure

 Disable password authentication to get max benefit
 SSH + key + agent is very convenient

 Type passphrase just once at start of day
 No need to type passwords each time you login
 No need to regularly change passwords across many hosts
 Agent forwarding permits multi-hop logins

 You need to deploy this!

Questions?

	SSH and keys
	Passwords are bad!
	SSH and system administration
	Using crypto keys with SSH
	User authentication with keys
	Generating a key pair
	OpenSSH public key looks like this
	Understand the difference!
	Keeping your private key safe
	Disabling passwords over SSH
	Man-in-the-middle attacks
	Host keys
	Host key verification
	Questions?
	SSH Agent
	Installing SSH agent
	Multi-hop authentication
	Agent forwarding
	Better: Jump Host
	SSH authentication for scheduled tasks
	Summary
	Questions? (2)

