
Virtualization Overview

NSRC



Terminology
 Virtualization: dividing available resources into smaller 

independent units

 Emulation: using software to simulate hardware which you do 
not have

 The two often come hand-in-hand

 e.g. we can virtualize a PC by using it to emulate a collection of less-
powerful PCs



Benefits (versus dedicated hardware)

• Consolidation
– Most systems are under-utilized (especially the CPU)
– Reduce space and power requirements
– Run different OSes on the same machine at once

• Flexibility
– Create, grow/shrink and delete instances as required 

• Additional capabilities
– Snapshots, migration, off-site replicas, …



Virtualization: a familiar example

 Who has not seen this before?! (Raise hands 
please)

 Like having two (or more) hard drives
 you get to choose the sizes

 Why is this useful?

500GBC:
200GB

D:
300GB

real drive

virtual drive virtual drive



Another example

• Virtualize a switch: VLANs
– like dividing a switch into separate 

switches

• Benefits:
– isolation: separate broadcast domains
– can create and assign VLANs purely 

through software configuration
– can combine VLANs onto a single 

cable (tagging/trunking)



Emulation

• In software, you can simulate the behavior of a device which 
doesn't exist
– Example: emulation of a CD-ROM drive using an ISO file

• a request to read block N of the (virtual) CD-ROM drive instead 
reads block N of the ISO file
– similar to partition mapping
– You can simulate any hardware - including the CPU or an entire system!



Entire system emulation - example

 Android SDK
 Emulates an Android smartphone with ARM 

CPU
 The "screen" is mapped to a window on your 

PC



System emulation

• There is no physical phone hardware
• The ARM CPU code is interpreted in software
• When the application executes an instruction which tries to write 

to the "screen", this is intercepted
– It instead updates a buffer in memory, which then gets drawn in a window

• The software running inside the emulator is unaware that this is 
happening



What's in a PC?

CPU + RAM

SATA*
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

BIOS

*i.e., hard drive



Boot sequence

• A small program (the BIOS) runs when machine is switched on
• It uses the hardware to load an operating system

– boot from hard drive, USB/CD-ROM, network...
– name comes from "lifting yourself off the ground by your own bootstraps"

• Modern operating systems then ignore the BIOS from that point 
onwards

• The next slide shows a machine after it has booted up (simplified)



SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

Kernel



Points to note

• The device drivers in the OS interact with the hardware
• User processes are forbidden by the OS from interacting directly 

with the hardware
– the OS configures protection mechanisms to enforce this



What we need to emulate a PC

• We must emulate all the components of the PC
– CPU and BIOS
– hard disk interface, network card
– graphics card, keyboard, mouse
– clock, memory management unit etc

• We want multiple instances to co-exist and not be able to interfere 
with each other
– access to memory must also be controlled

• The software to do this is called a hypervisor



SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

C:>

HYPERVISOR

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

Kernel

SATA
interface

Network
interface

Graphics
Card

USB,
Serial etc

device
driver

device
driver

device
driver

device
driver

syscall API and libraries

filesystem
network

stack

user
process

user
process

user
process

Kernel

emulated
hardware

Virtual machine 1 Virtual machine 2



Virtual Machines

• Each emulated PC is a "virtual machine"
• Hypervisor allocates some real system RAM to each VM, and 

shares the CPU time
• Hypervisor emulates other hardware, e.g. disk and network

– (or in some cases, you might pass through the whole device)

• Within each VM you can boot an operating system
• Full hardware virtualization means different VMs can be running 

different OSes



Virtualization terminology

• The host is the machine running the emulation
• The guest is the emulated (virtual) machine
• One host could be running many guests

Host
(OS + Hypervisor)

Guest
OS

Guest
OS



The Hypervisor

• Note that the Hypervisor itself needs an operating system *
– It needs device drivers, a filesystem, a network stack for remote 

management, etc

• So there is a host OS for the hypervisor, plus guest OSes
• The hypervisor needs a management interface for you to create, 

configure, start/stop and otherwise manage the guests

* Even so-called "bare-metal" or "Type 1" Hypervisors include a cut-down operating system



CPU emulation

• Emulating a CPU in software is very expensive
– One guest CPU instruction takes many host CPU instructions to emulate

• If the host and the guest have the same CPU architecture, then 
guest code can run directly on the CPU at full speed

• However, the hypervisor still has to intercept any attempt by the 
guest to access hardware directly

• Modern CPUs provide hardware support to make this efficient
– Intel: "VT-x", "VT-d"
– AMD: "AMD-V", "AMD-Vi"



Emulated disk hardware

• A hard drive is a "block device"
– OS makes requests like "read block number 42", "write block number 99"

• Real hard drives have a fixed size!
– This is what the guest OS will expect to see

• The hypervisor must redirect these accesses to something else
• Options include:

– a disk image file on the host (simple)
– a partition or logical volume on the host (faster)
– a remote file or remote block device (via network)



Disk image files

• VM disk which is a regular file inside the host's filesystem
• A disk image file is easy to backup and transfer from host to host
• It's a bit less efficient than direct-to-disk access

– it has to go through more layers in the host filesystem

• There are different types of disk image file
• Suppose we want the guest to have a 10GiB virtual hard drive. 

What options are there?



Option 1: 10GiB raw file

• A "raw" file is a just a plain data file
– a 10GiB virtual disk is exactly a 10GiB file on the host
– Nth block of the virtual hard drive corresponds to the Nth block in the image 

file

• If this is allocated up-front, you use 10GiB of (probably) 
contiguous space on the host
– Fast in operation, avoids fragmentation on the host
– Wasteful of space
– Slow to create
– Slow to copy



Option 2: 10GiB sparse raw file

• Some OSes support "sparse" files, files with "holes"
– still looks like a plain 10GiB file
– but it doesn't allocate space until each block is written to; this is known as 

"thin provisioning"
– the size of the file ("ls -l") is larger than the disk space used by the file

("ls -s" or "du")

• can lead to fragmentation
• can lead to failures if filesystem becomes full

– "overcommitting": creating more VM images than actual space available

• if you are not careful, may expand to the full 10GiB when copied



Option 3: custom VM disk image format

• Various formats, e.g. QCOW2 (qemu/kvm), VDI (virtualbox), 
VMDK (VMware)

• Has a header which maps blocks to file offsets
• Efficient space utilization

– supports thin provisioning without needing OS support for sparse files
– can be copied without losing its "sparseness"
– still leads to fragmentation, unless you pre-allocate all the space

• Other features, e.g. snapshots within the same file
– only the differences between the snapshots are stored



Comparison of disk image types
Raw file (preallocated)

Raw file (sparse)

Growable VM image file

H

H

Pre-allocated VM image file



Emulated network hardware

• Each guest NIC gets a fake MAC address
• Different ways to interconnect with host NIC

– "NAT": outbound packets translated to share the host's IP address
– "Bridging": packets sent/received untranslated over the host's NIC, and 

each VM gets its own IP address on the external network
– More complex setups, e.g. overlay networks



Performance optimizations

• Emulating disk hardware and network hardware is also expensive
– has to emulate bits in registers, interrupts etc

• "Paravirtualization" is where the guest OS communicates 
explicitly with the hypervisor, and is more efficient
– A popular implementation is called "VirtIO"
– The guest OS has to have suitable drivers and be aware it is running 

inside a virtualization environment
– Most Linux kernels do; Windows VirtIO drivers are available

• Allows other features like host file sharing and "balloon memory"



Choosing a virtualization platform



Popular hypervisors

• For Linux hosts: KVM most common; also Xen, VirtualBox
• For Windows hosts: Hyper-V, VirtualBox
• Others: FreeBSD Bhyve…
• Commercial offerings

– ESXi used to be free, but not any more

• We will focus on KVM
– It's very popular, very actively developed, widely supported

https://www.theregister.com/2024/02/13/broadcom_ends_free_esxi_vsphere/


About KVM

• KVM = Kernel Virtual Machine
– Built-in to the Linux kernel
– The host must be Linux (but not necessarily the guests, of course)

• KVM requires VT-x or AMD-V to run
• Separate software to emulate PC devices (normally QEMU)
• Each VM is just a userland process
• Can even run it directly from the command line!

kvm -cdrom /path/to/image.iso



Management framework

• You need software to start and stop those KVM processes
– need to pass large numbers of command line arguments to configure 

CPUs, RAM, disks, networks, and other devices

• There are lots of options
– libvirt runs on a single machine; virt-manager is X11 GUI for libvirt
– proxmox VE: VMs and containers
– lxd / incus: system containers and VMs (Canonical "MicroCloud")
– oVirt (upstream of commercial RHV)
– commercial software built on top of KVM (e.g. Nutanix…)



What about Openstack?

https://docs.openstack.org/install-guide/get-started-logical-architecture.html


We've chosen Proxmox VE

• "Mostly free"
– Free installation from ISO or Debian packages
– Paid-for access to their "enterprise repository" for updates, and support
– Free repository of "less well tested" updates (CentOS stream-like model)

• Start small, grow to clusters of 15-20 servers
– Above that, go for multiple independent clusters

• Very good web UI, useful API and command line
– Manage the whole cluster from any host

• Many storage options
– including LVM, ZFS, Ceph, Linstor (as a plugin)

https://pve.proxmox.com/wiki/Package_Repositories#sysadmin_no_subscription_repo


Proxmox VE ISO installation



The End

… and Proxmox Lab


	Virtualization Overview
	Terminology
	Benefits (versus dedicated hardware)
	Virtualization: a familiar example
	Another example
	Emulation
	Entire system emulation - example
	System emulation
	What's in a PC?
	Boot sequence
	Slide 11
	Points to note
	What we need to emulate a PC
	Slide 14
	Virtual Machines
	Virtualization terminology
	The Hypervisor
	CPU emulation
	Emulated disk hardware
	Disk image files
	Option 1: 10GiB raw file
	Option 2: 10GiB sparse raw file
	Option 3: custom VM disk image format
	Comparison of disk image types
	Emulated network hardware
	Performance optimizations
	Choosing a virtualization platform
	Popular hypervisors
	About KVM
	Management framework
	What about Openstack?
	We've chosen Proxmox VE
	Proxmox VE ISO installation
	The End

