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Terminology
 Virtualization: dividing available resources into smaller 

independent units

 Emulation: using software to simulate hardware which you do 
not have

 The two often come hand-in-hand

 e.g. we can virtualize a PC by using it to emulate a collection of less-
powerful PCs



Benefits (versus dedicated hardware)

• Consolidation
– Most systems are under-utilized (especially the CPU)
– Reduce space and power requirements
– Run different OSes on the same machine at once

• Flexibility
– Create, grow/shrink and delete instances as required 

• Additional capabilities
– Snapshots, migration, off-site replicas, …



Virtualization: a familiar example

 Who has not seen this before?! (Raise hands 
please)

 Like having two (or more) hard drives
 you get to choose the sizes

 Why is this useful?

500GBC:
200GB

D:
300GB

real drive

virtual drive virtual drive



Another example

• Virtualize a switch: VLANs
– like dividing a switch into separate 

switches

• Benefits:
– isolation: separate broadcast domains
– can create and assign VLANs purely 

through software configuration
– can combine VLANs onto a single 

cable (tagging/trunking)



Emulation

• In software, you can simulate the behavior of a device which 
doesn't exist
– Example: emulation of a CD-ROM drive using an ISO file

• a request to read block N of the (virtual) CD-ROM drive instead 
reads block N of the ISO file
– similar to partition mapping
– You can simulate any hardware - including the CPU or an entire system!



Entire system emulation - example

 Android SDK
 Emulates an Android smartphone with ARM 

CPU
 The "screen" is mapped to a window on your 

PC



System emulation

• There is no physical phone hardware
• The ARM CPU code is interpreted in software
• When the application executes an instruction which tries to write 

to the "screen", this is intercepted
– It instead updates a buffer in memory, which then gets drawn in a window

• The software running inside the emulator is unaware that this is 
happening



What's in a PC?
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Boot sequence

• A small program (the BIOS) runs when machine is switched on
• It uses the hardware to load an operating system

– boot from hard drive, USB/CD-ROM, network...
– name comes from "lifting yourself off the ground by your own bootstraps"

• Modern operating systems then ignore the BIOS from that point 
onwards

• The next slide shows a machine after it has booted up (simplified)
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Points to note

• The device drivers in the OS interact with the hardware
• User processes are forbidden by the OS from interacting directly 

with the hardware
– the OS configures protection mechanisms to enforce this



What we need to emulate a PC

• We must emulate all the components of the PC
– CPU and BIOS
– hard disk interface, network card
– graphics card, keyboard, mouse
– clock, memory management unit etc

• We want multiple instances to co-exist and not be able to interfere 
with each other
– access to memory must also be controlled

• The software to do this is called a hypervisor
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Virtual Machines

• Each emulated PC is a "virtual machine"
• Hypervisor allocates some real system RAM to each VM, and 

shares the CPU time
• Hypervisor emulates other hardware, e.g. disk and network

– (or in some cases, you might pass through the whole device)

• Within each VM you can boot an operating system
• Full hardware virtualization means different VMs can be running 

different OSes



Virtualization terminology

• The host is the machine running the emulation
• The guest is the emulated (virtual) machine
• One host could be running many guests

Host
(OS + Hypervisor)

Guest
OS

Guest
OS



The Hypervisor

• Note that the Hypervisor itself needs an operating system *
– It needs device drivers, a filesystem, a network stack for remote 

management, etc

• So there is a host OS for the hypervisor, plus guest OSes
• The hypervisor needs a management interface for you to create, 

configure, start/stop and otherwise manage the guests

* Even so-called "bare-metal" or "Type 1" Hypervisors include a cut-down operating system



CPU emulation

• Emulating a CPU in software is very expensive
– One guest CPU instruction takes many host CPU instructions to emulate

• If the host and the guest have the same CPU architecture, then 
guest code can run directly on the CPU at full speed

• However, the hypervisor still has to intercept any attempt by the 
guest to access hardware directly

• Modern CPUs provide hardware support to make this efficient
– Intel: "VT-x", "VT-d"
– AMD: "AMD-V", "AMD-Vi"



Emulated disk hardware

• A hard drive is a "block device"
– OS makes requests like "read block number 42", "write block number 99"

• Real hard drives have a fixed size!
– This is what the guest OS will expect to see

• The hypervisor must redirect these accesses to something else
• Options include:

– a disk image file on the host (simple)
– a partition or logical volume on the host (faster)
– a remote file or remote block device (via network)



Disk image files

• VM disk which is a regular file inside the host's filesystem
• A disk image file is easy to backup and transfer from host to host
• It's a bit less efficient than direct-to-disk access

– it has to go through more layers in the host filesystem

• There are different types of disk image file
• Suppose we want the guest to have a 10GiB virtual hard drive. 

What options are there?



Option 1: 10GiB raw file

• A "raw" file is a just a plain data file
– a 10GiB virtual disk is exactly a 10GiB file on the host
– Nth block of the virtual hard drive corresponds to the Nth block in the image 

file

• If this is allocated up-front, you use 10GiB of (probably) 
contiguous space on the host
– Fast in operation, avoids fragmentation on the host
– Wasteful of space
– Slow to create
– Slow to copy



Option 2: 10GiB sparse raw file

• Some OSes support "sparse" files, files with "holes"
– still looks like a plain 10GiB file
– but it doesn't allocate space until each block is written to; this is known as 

"thin provisioning"
– the size of the file ("ls -l") is larger than the disk space used by the file

("ls -s" or "du")

• can lead to fragmentation
• can lead to failures if filesystem becomes full

– "overcommitting": creating more VM images than actual space available

• if you are not careful, may expand to the full 10GiB when copied



Option 3: custom VM disk image format

• Various formats, e.g. QCOW2 (qemu/kvm), VDI (virtualbox), 
VMDK (VMware)

• Has a header which maps blocks to file offsets
• Efficient space utilization

– supports thin provisioning without needing OS support for sparse files
– can be copied without losing its "sparseness"
– still leads to fragmentation, unless you pre-allocate all the space

• Other features, e.g. snapshots within the same file
– only the differences between the snapshots are stored



Comparison of disk image types
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Emulated network hardware

• Each guest NIC gets a fake MAC address
• Different ways to interconnect with host NIC

– "NAT": outbound packets translated to share the host's IP address
– "Bridging": packets sent/received untranslated over the host's NIC, and 

each VM gets its own IP address on the external network
– More complex setups, e.g. overlay networks



Performance optimizations

• Emulating disk hardware and network hardware is also expensive
– has to emulate bits in registers, interrupts etc

• "Paravirtualization" is where the guest OS communicates 
explicitly with the hypervisor, and is more efficient
– A popular implementation is called "VirtIO"
– The guest OS has to have suitable drivers and be aware it is running 

inside a virtualization environment
– Most Linux kernels do; Windows VirtIO drivers are available

• Allows other features like host file sharing and "balloon memory"



Choosing a virtualization platform



Popular hypervisors

• For Linux hosts: KVM most common; also Xen, VirtualBox
• For Windows hosts: Hyper-V, VirtualBox
• Others: FreeBSD Bhyve…
• Commercial offerings

– ESXi used to be free, but not any more

• We will focus on KVM
– It's very popular, very actively developed, widely supported

https://www.theregister.com/2024/02/13/broadcom_ends_free_esxi_vsphere/


About KVM

• KVM = Kernel Virtual Machine
– Built-in to the Linux kernel
– The host must be Linux (but not necessarily the guests, of course)

• KVM requires VT-x or AMD-V to run
• Separate software to emulate PC devices (normally QEMU)
• Each VM is just a userland process
• Can even run it directly from the command line!

kvm -cdrom /path/to/image.iso



Management framework

• You need software to start and stop those KVM processes
– need to pass large numbers of command line arguments to configure 

CPUs, RAM, disks, networks, and other devices

• There are lots of options
– libvirt runs on a single machine; virt-manager is X11 GUI for libvirt
– proxmox VE: VMs and containers
– lxd / incus: system containers and VMs (Canonical "MicroCloud")
– oVirt (upstream of commercial RHV)
– commercial software built on top of KVM (e.g. Nutanix…)



What about Openstack?

https://docs.openstack.org/install-guide/get-started-logical-architecture.html


We've chosen Proxmox VE

• "Mostly free"
– Free installation from ISO or Debian packages
– Paid-for access to their "enterprise repository" for updates, and support
– Free repository of "less well tested" updates (CentOS stream-like model)

• Start small, grow to clusters of 15-20 servers
– Above that, go for multiple independent clusters

• Very good web UI, useful API and command line
– Manage the whole cluster from any host

• Many storage options
– including LVM, ZFS, Ceph, Linstor (as a plugin)

https://pve.proxmox.com/wiki/Package_Repositories#sysadmin_no_subscription_repo


Proxmox VE ISO installation



The End

… and Proxmox Lab
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