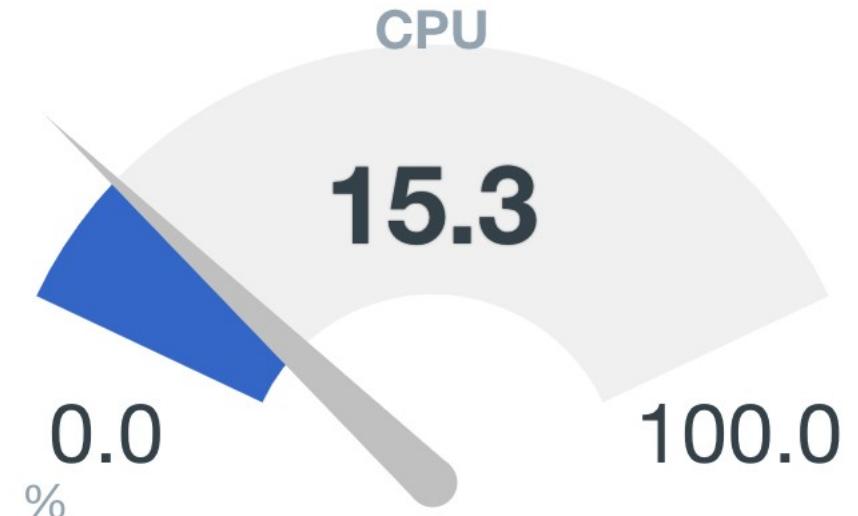


Network Monitoring and Management Tools

- Metrics collection
- Active measurement
- Netflow
- Logs
- Configuration management
- Alerting

Metrics


Metrics

Something that you *measure*

Metrics are always *numeric values*

Types of metric:

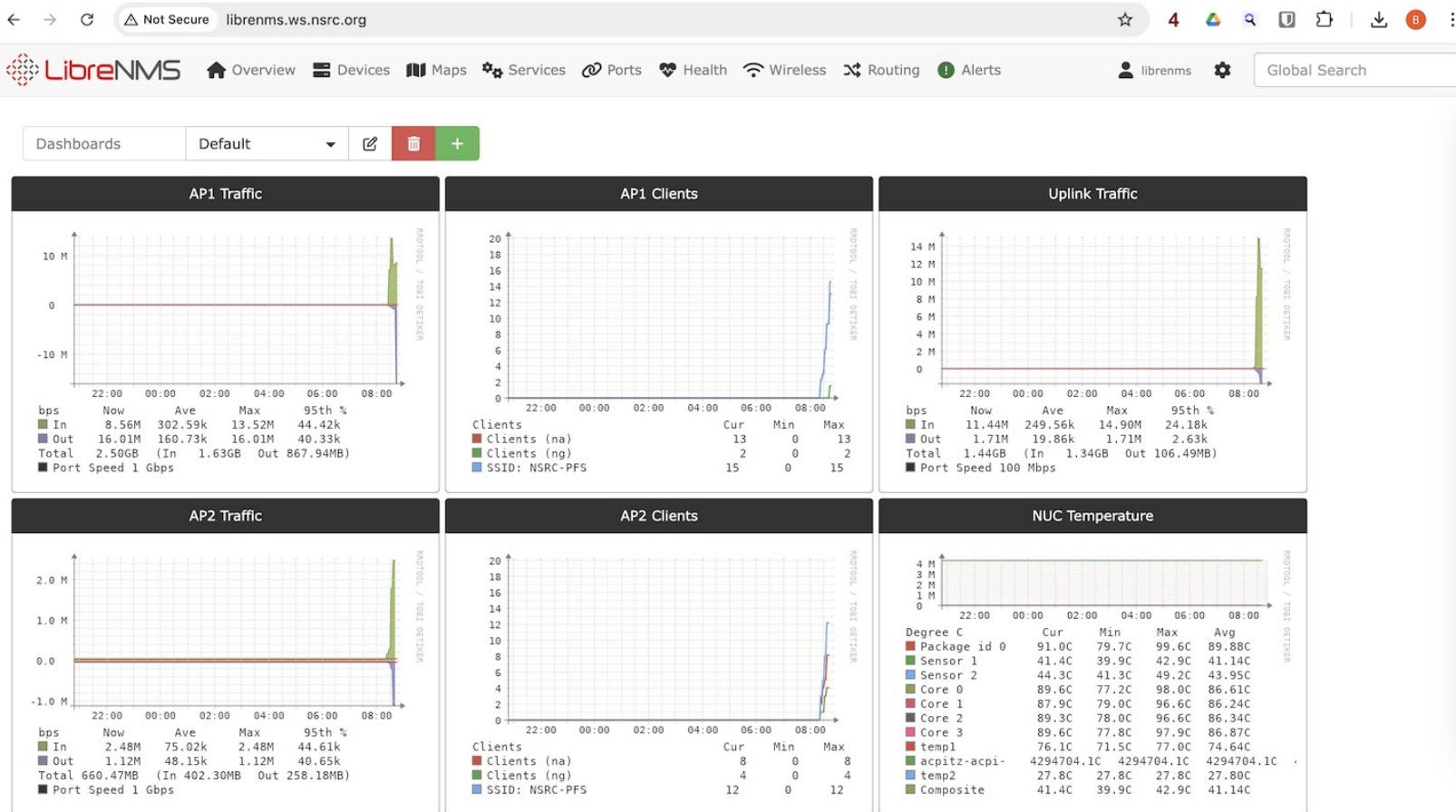
- Gauges (e.g. *available disk space, temperature*)
- Counters (e.g. *bytes received, total time spent working*)
 - counters *only ever INCREASE*

Data collection: SNMP

- Simple Network Management Protocol (v1, v2, v3)
- Widely implemented in network devices
- Also for servers, if you install an SNMP agent
- Counters: e.g. interface traffic, interface errors, ...
 - Count of number of bytes sent/received since device booted
 - Monitoring software converts into rate (bits per second)
- Gauges: uptime, CPU/RAM utilization, temperature, fan status etc...
- Non-metric data: ARP and bridge tables, LLDP neighbors, ...

Metric storage: RRDtool

- Legacy storage format used by older tools like Cacti, Smokeping, and LibreNMS
- Optimized to use *fixed disk space*
 - Older data is stored at increasingly lower resolutions
 - But disk space is very cheap these days!
- Poor performance in terms of *disk I/O operations*


Metric storage: RRDtool

Software: LibreNMS (fork of Observium)

- "All-in-one" NMM platform, quick to deploy
- SNMP data collection
- Device inventory and discovery
- Topology discovery (LLDP/CDP)
- Auto-configuration of data collection for each device type
- Web interface
- Alerting

LibreNMS Demo

Limitations of LibreNMS

- Not efficient, primarily due to RRDtool
 - Creates large numbers of RRD files (graphs) per device
 - Scaling to large numbers of devices requires powerful hardware and/or sharding across multiple servers
- Many features not well documented

Alternative: Prometheus + Grafana

- Data collection using simple http protocol to scrape "exporters"
 - snmp_exporter for network devices
 - node_exporter for Linux/Unix systems
 - easy to write your own exporters to instrument any application
- Highly efficient time series database
 - Scales to millions of time series, highly performant
 - Unlike RRDtool, does not discard data (except configured retention time)
- Powerful query language (PromQL) used for graphing and alerting
- Clean separation of collection, storage, visualization, alerting

Demo: Prometheus + Grafana

Limitations of Prometheus ecosystem

- Not a Network Management System
 - It's a generic metric collection system
 - "Kit of parts" that you assemble yourself
 - No device discovery or automatic device inventory
 - Tricky to set up for SNMP, beyond the supplied sample MIBs
- Steep learning curve (it's worthwhile!)
- Metrics only, no logs

Active Measurement

Active measurement (probing)

- Perform active tests across the network
 - ping tests
 - service tests (e.g. HTTP, DNS)
- Availability: test whether service is "up" or "down"
- Performance: measure response time
- Store, visualize, alert
- SLA reporting

Software: Nagios

- Main focus on "up/down" availability and alerting
- Configured by plain text files
- Tests done via running "plugins" which are easy to write
- Historical storage in plain text files
- More sophisticated derivatives available e.g. check_mk, omd

Demo: Nagios

Not Secure noc.ws.nsrc.org/nagios4/

Nagios®

General

Home Documentation

Current Status

Tactical Overview
Map (Legacy)
Hosts
Services

Host Groups
Summary
Grid

Service Groups
Summary
Grid

Problems
Services (Unhandled)
Hosts (Unhandled)
Network Outages

Quick Search:

Reports

Availability
Trends (Legacy)
Alerts
History
Summary
Histogram (Legacy)
Notifications
Event Log

System

Comments
Downtime
Process Info
Performance Info
Scheduling Queue
Configuration

Host Status Totals

Up	Down	Unreachable	Pending
61	0	0	0

All Problems All Types

0	61
---	----

Service Status Totals

Ok	Warning	Unknown	Critical	Pending
71	0	8	43	0

All Problems All Types

51	122
----	-----

Service Status Details For All Hosts

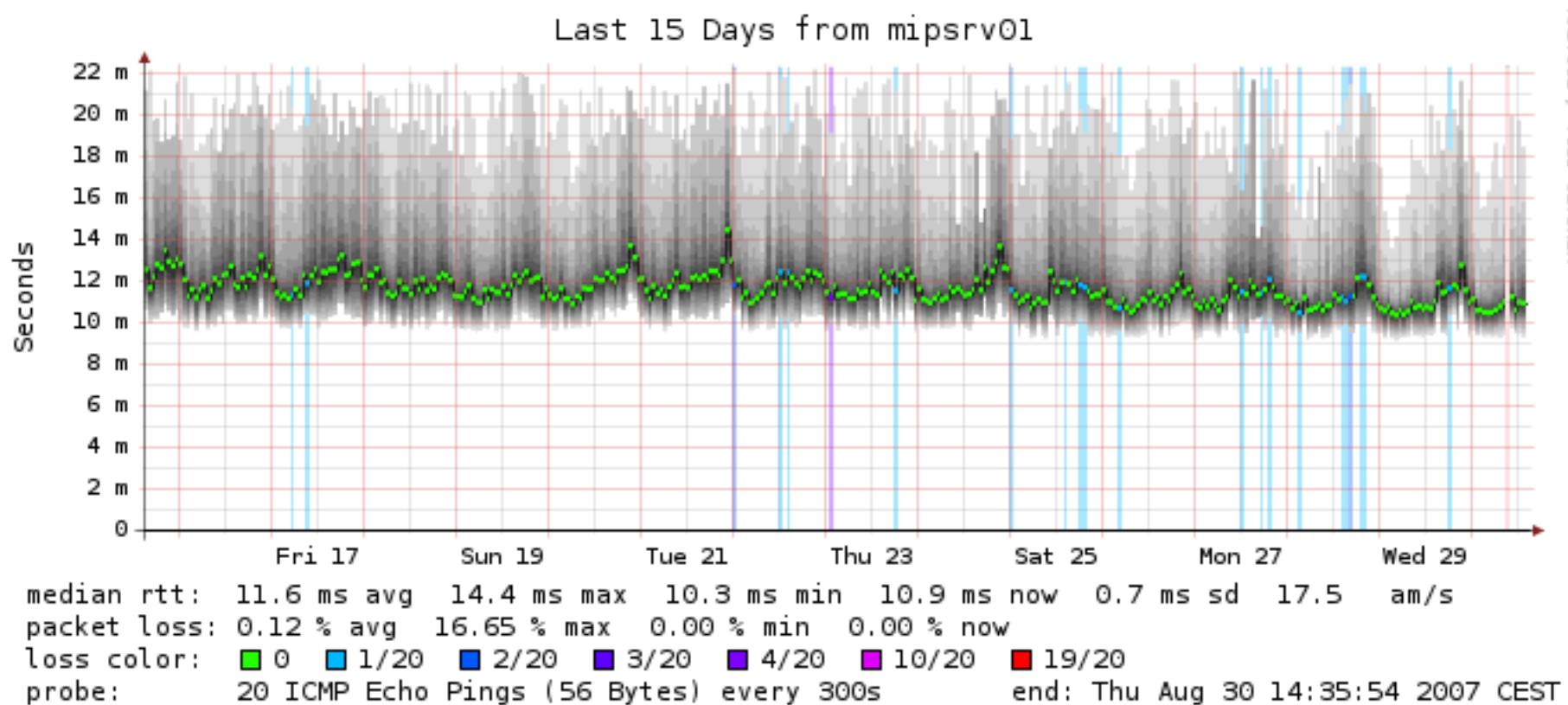
Limit Results: 100

Host	Service	Status	Last Check	Duration	Attempt	Status Information
ap1	SNMP	UNKNOWN	08-2024 03:12:11	1d 20h 27m 10s	3/3	UNKNOWN: IPv4/ap1.ws.nsrc.org UNKNOWN
ap2	SNMP	UNKNOWN	08-2024 03:07:01	1d 20h 32m 20s	3/3	UNKNOWN: IPv4/ap2.ws.nsrc.org UNKNOWN
bdr1.campus1	SNMP	OK	08-2024 03:12:15	1d 17h 50m 23s	1/3	OK: IPv6/bdr1.campus1.ws.nsrc.org OK, IPv4/bdr1.campus1.ws.nsrc.org OK
bdr1.campus2	SNMP	OK	08-2024 03:12:20	1d 18h 50m 18s	1/3	OK: IPv6/bdr1.campus2.ws.nsrc.org OK, IPv4/bdr1.campus2.ws.nsrc.org OK
bdr1.campus2	SSH	CRITICAL	08-2024 03:05:19	0d 15h 47m 28s	10/10	connect to address bdr1.campus2.ws.nsrc.org and port 22: Connection refused
bdr1.campus3	SNMP	OK	08-2024 03:12:25	1d 19h 10m 13s	1/3	OK: IPv6/bdr1.campus3.ws.nsrc.org OK, IPv4/bdr1.campus3.ws.nsrc.org OK
bdr1.campus3	SSH	OK	08-2024 03:07:15	1d 19h 5m 23s	1/10	SSH OK - Cisco-1.25 (protocol 2.0)
bdr1.campus4	SNMP	OK	08-2024 03:12:30	1d 18h 50m 8s	1/3	OK: IPv6/bdr1.campus4.ws.nsrc.org OK, IPv4/bdr1.campus4.ws.nsrc.org OK
bdr1.campus4	SSH	CRITICAL	08-2024 03:05:21	0d 16h 7m 17s	10/10	connect to address bdr1.campus4.ws.nsrc.org and port 22: Connection refused
bdr1.campus5	SNMP	OK	08-2024 03:02:34	1d 18h 10m 4s	1/3	OK: IPv6/bdr1.campus5.ws.nsrc.org OK, IPv4/bdr1.campus5.ws.nsrc.org OK
bdr1.campus5	SSH	CRITICAL	08-2024 03:05:22	0d 15h 57m 16s	10/10	connect to address bdr1.campus5.ws.nsrc.org and port 22: Connection refused
bdr1.campus6	SNMP	OK	08-2024 03:02:39	1d 19h 9m 59s	1/3	OK: IPv6/bdr1.campus6.ws.nsrc.org OK, IPv4/bdr1.campus6.ws.nsrc.org OK
bdr1.campus6	SSH	CRITICAL	08-2024 03:05:21	0d 15h 57m 17s	10/10	connect to address bdr1.campus6.ws.nsrc.org and port 22: Connection refused
core1.campus1	SNMP	UNKNOWN	08-2024 03:02:44	0d 22h 19m 54s	3/3	UNKNOWN: IPv6/core1.campus1.ws.nsrc.org UNKNOWN, IPv4/core1.campus1.ws.nsrc.org UNKNOWN
core1.campus1	SSH	CRITICAL	08-2024 03:05:23	0d 15h 37m 15s	10/10	connect to address core1.campus1.ws.nsrc.org and port 22: Connection refused
core1.campus2	SNMP	OK	08-2024 03:05:50	1d 0h 26m 48s	1/3	OK: IPv6/core1.campus2.ws.nsrc.org OK, IPv4/core1.campus2.ws.nsrc.org OK
core1.campus2	SSH	OK	08-2024 03:07:22	1d 15h 25m 16s	1/10	SSH OK - Cisco-1.25 (protocol 2.0)
core1.campus3	SNMP	OK	08-2024 03:02:53	1d 18h 39m 45s	1/3	OK: IPv6/core1.campus3.ws.nsrc.org OK, IPv4/core1.campus3.ws.nsrc.org OK
core1.campus3	SSH	CRITICAL	08-2024 03:05:22	0d 15h 57m 16s	10/10	connect to address core1.campus3.ws.nsrc.org and port 22: Connection refused
core1.campus4	SNMP	OK	08-2024 03:02:58	1d 18h 49m 40s	1/3	OK: IPv6/core1.campus4.ws.nsrc.org OK, IPv4/core1.campus4.ws.nsrc.org OK
core1.campus4	SSH	CRITICAL	08-2024 03:05:23	0d 16h 7m 15s	10/10	connect to address core1.campus4.ws.nsrc.org and port 22: Connection refused
core1.campus5	SNMP	OK	08-2024 03:03:03	1d 18h 9m 35s	1/3	OK: IPv6/core1.campus5.ws.nsrc.org OK, IPv4/core1.campus5.ws.nsrc.org OK
core1.campus5	SSH	CRITICAL	08-2024 03:07:23	4d 0h 34m 19s	10/10	connect to address core1.campus5.ws.nsrc.org and port 22: Connection refused
core1.campus6	SNMP	OK	08-2024 03:03:09	1d 18h 59m 30s	1/3	OK: IPv6/core1.campus6.ws.nsrc.org OK, IPv4/core1.campus6.ws.nsrc.org OK
core1.campus6	SSH	CRITICAL	08-2024 03:05:21	0d 15h 57m 17s	10/10	connect to address core1.campus6.ws.nsrc.org and port 22: Connection refused
dist1-b1.campus1	SNMP	UNKNOWN	08-2024 03:05:14	1d 18h 57m 24s	3/3	External command error: snmpget: Unknown user name
dist1-b1.campus1	SSH	CRITICAL	08-2024 03:07:21	4d 0h 34m 19s	3/3	connect to address dist1-b1.campus1.ws.nsrc.org and port 22: Connection refused

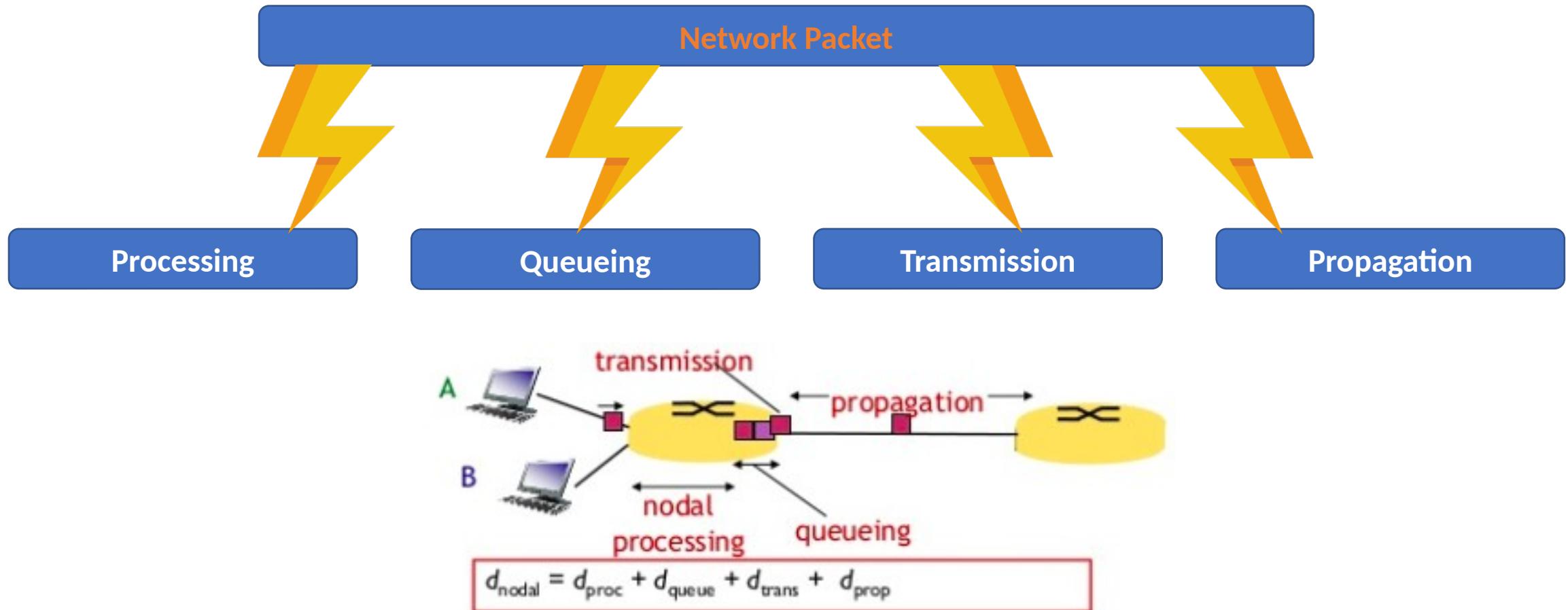
Results 0 - 100 of 122 Matching Services

Page Tour

noc.ws.nsrc.org/cgi-bin/nagios4/status.cgi?hostgroup=all&style=overview OK 08-08-2024 03:03:17 1d 15h 19m 21s 1/3 SNMP OK - Cisco IOS Software, vios_i2 Software (vios_i2-ADVENTERPRISEK9-M), Experimental Version 15.2(20200924:215240)


Limitations/Alternatives to Nagios

- Text file configuration
 - Pro: easy to backup and compare
 - Con: need to edit text files every time you add a device
- There are other tools in this space if you just want basic service availability checking, e.g. Uptime Kuma
 - and free services which will perform some tests from outside your network
- LibreNMS can also invoke Nagios plugins
 - Maybe that's sufficient for your needs?


Software: Smokeping

- Main focus on round-trip time and packet loss measurement
- Configured by plain text files
- Historical storage in RRD files
- Can also measure response times for DNS etc
 - Unfortunately the HTTP response time plugin (echoping) is unmaintained and has been removed

Demo: Smokeping

What causes the variation in delay?

Courtesy <https://www.slideshare.net/maamirfarooq/lec-4packet-delay-layered-architecture>

What causes packet loss?

- Queue overruns; and
- Transmission errors
- Both of these cause TCP to reduce speed drastically (response to congestion)
- The speed drop depends very much on round-trip-time
 - Nearby destinations not affected much; International destinations very strongly affected

Limitations of Smokeping

- Text file config (see Nagios)
- RRD storage
- Low resolution: default send 20 packets every 5 minutes
 - Won't detect packet loss < 5%
 - Won't detect outages during the other 4 minutes 40 seconds

Alternative: probing with Prometheus

- blackbox_exporter
 - measures ping, DNS, HTTP
- smokeping_exporter
- nrpe_exporter
 - talks to Nagios plugins
- Run a test script that outputs Prometheus metrics
- Makes sense if you're already in the Prometheus ecosystem

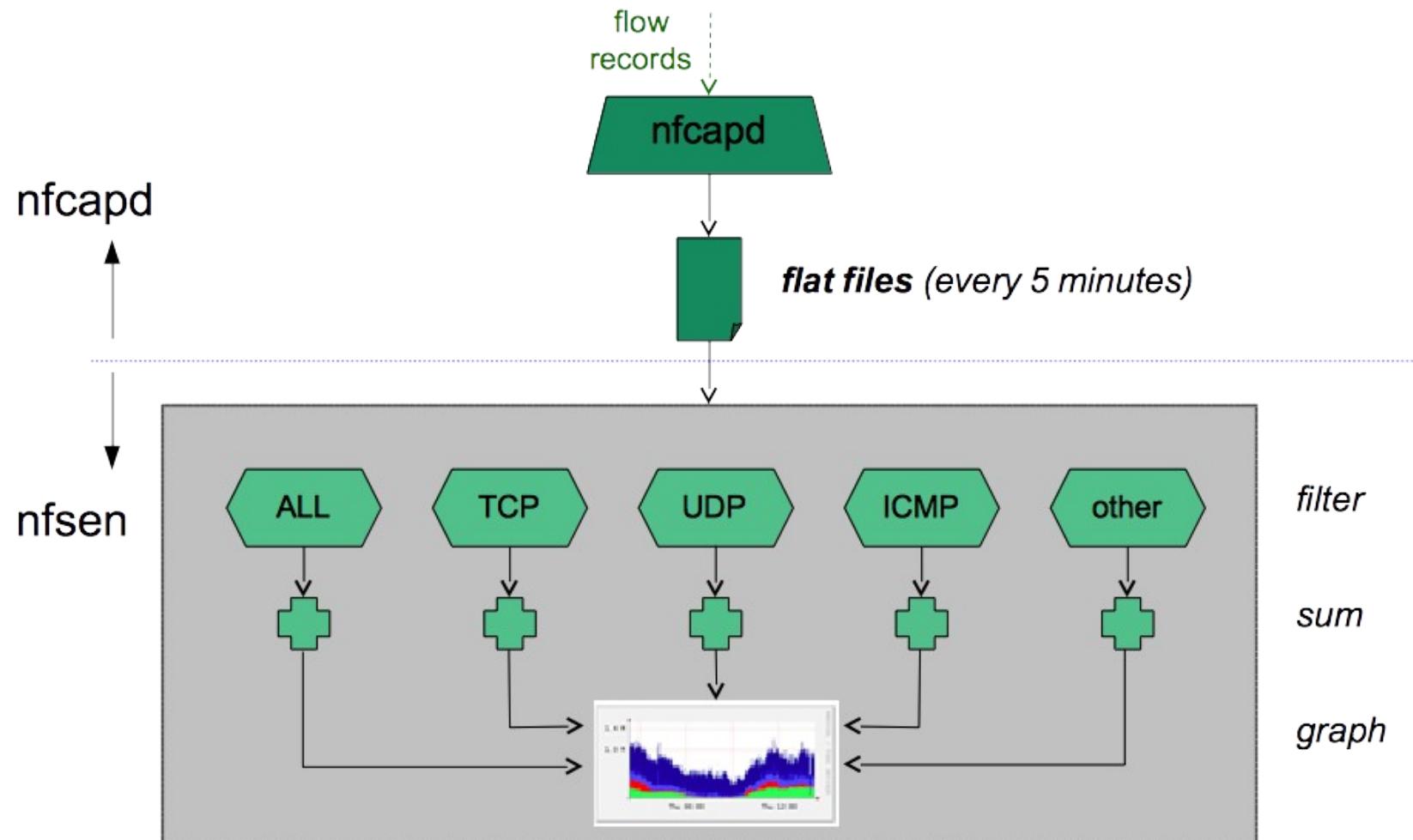
Software: Perfsonar

- Very sensitive packet loss and RTT measurement
- By default sends 10 packets per second = 36,000 packets per hour
 - Detect packet loss as low as 0.003% over an hour
- Also performs periodic TCP throughput "speed test"
- Tests run *between* perfsonar nodes
 - Option to separate the measurement endpoints and central data storage
- Tools to build a mesh configuration

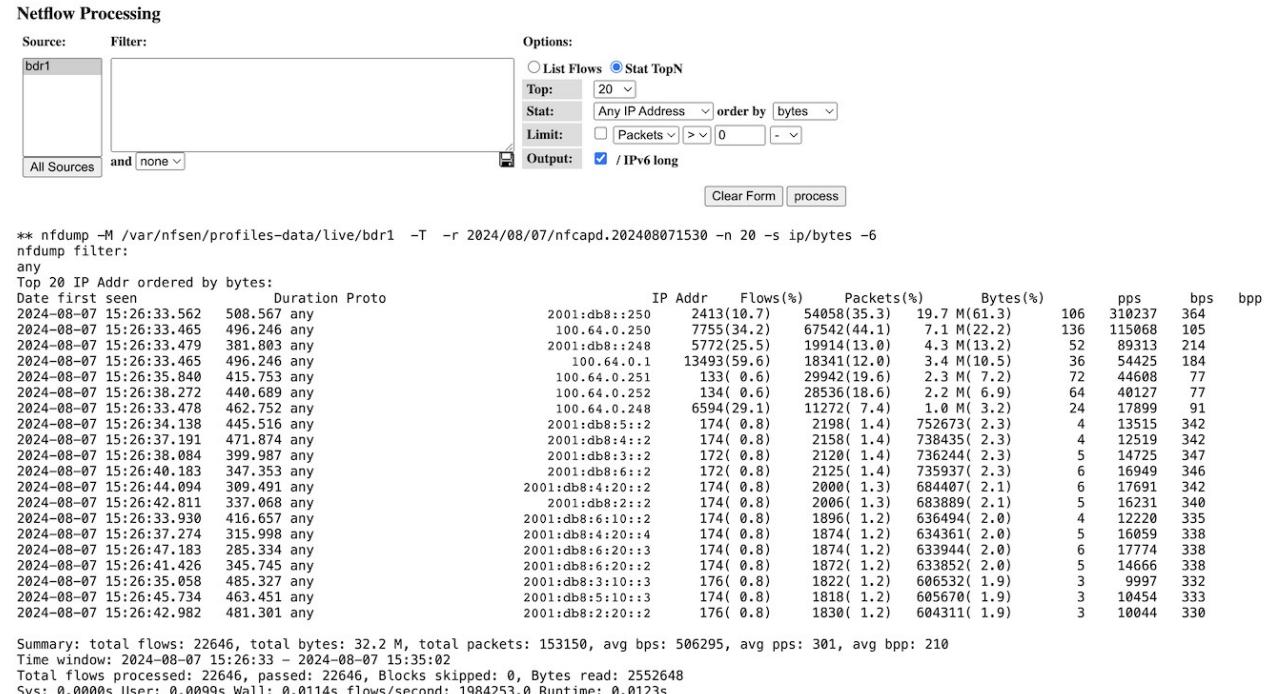
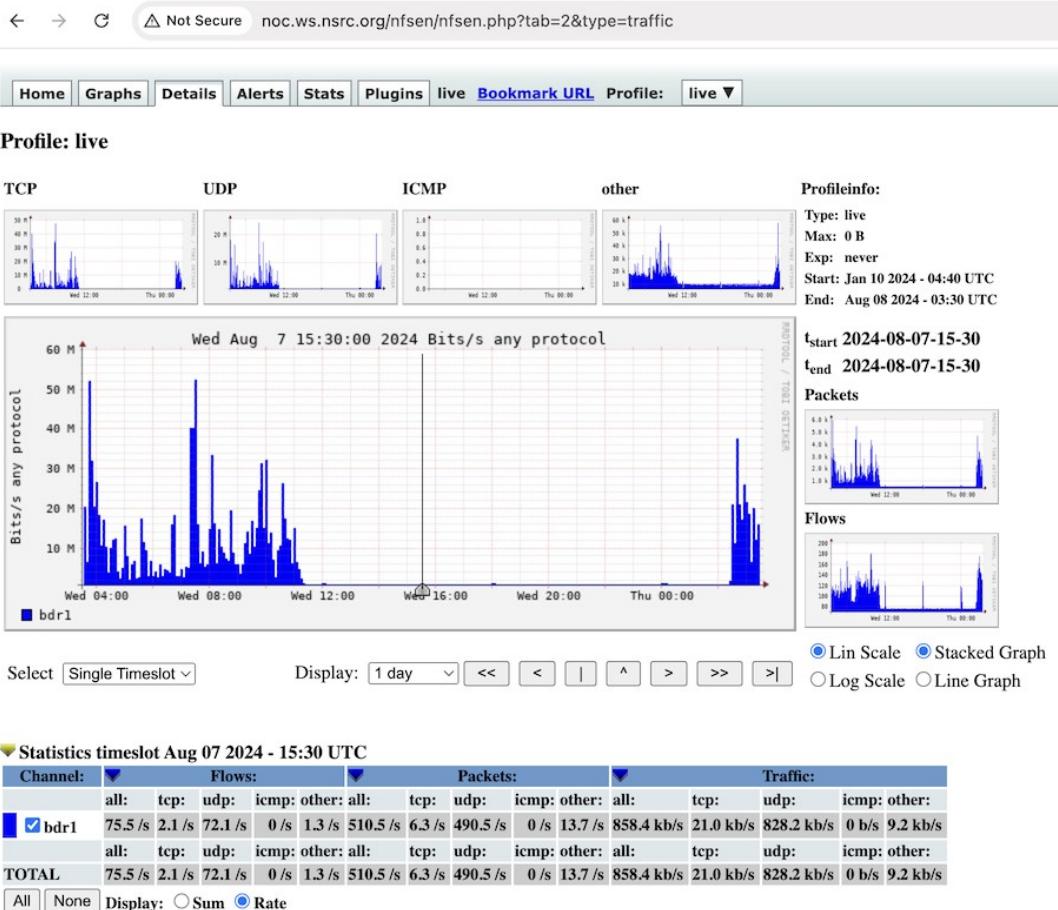
Netflow


Netflow / IPFIX

- Records of individual packet flows
 - Collection of packets with same protocol, source IP, destination IP, source port and destination port
 - Record gives total number of bytes and total number of packets in the flow
- Flow records usually generated by router/firewall
- Sent via UDP to a flow collector
- Collector stores to disk, allows querying and visualization
- Very powerful, e.g. identify the "top talkers" on your network


Software: nfdump + nfSEN

- Very resource efficient
 - Minimal disk I/O ops for received flows; even spinning hard drives are fine
 - No indexing
 - Flip side is that queries can be slow
- Old
 - nfdump still being actively maintained; nfSEN barely so
 - Not pretty



nfdump architecture

nfdump/nfsen architecture

Demo: nfsen

UNIVERSITY OF OREGON

Some Netflow collector alternatives

- Filebeat + Elasticsearch* + Kibana*
 - Elasticsearch is very resource intensive, due to up-front indexing
 - You *must* use SSD, and you needs lots of RAM and CPU
 - Expect your data to expand in size by a factor of 10
- Elastiflow: was free, now commercial
 - free basic license available for up to 4,000 flows per second
 - but need to renew it annually - will it always remain free?
- ntop-*ng*: commercial, but free for R&E networks
 - real-time reporting + historical storage in Clickhouse database
- Akvorado: free, uses Kafka and Clickhouse, relatively new

Other ways to generate flow records

- Use a switch mirror port and a software flow monitor
 - softflowd, pfflowd: generate standard Netflow records
 - packetbeat
 - JSON for insertion into Elasticsearch etc
 - Can also decode content to a degree (e.g. DNS queries/responses)
- May be convenient place to run an IDS as well

Logs

Logs

Detailed records of *individual events*

Unstructured text, e.g. syslog:

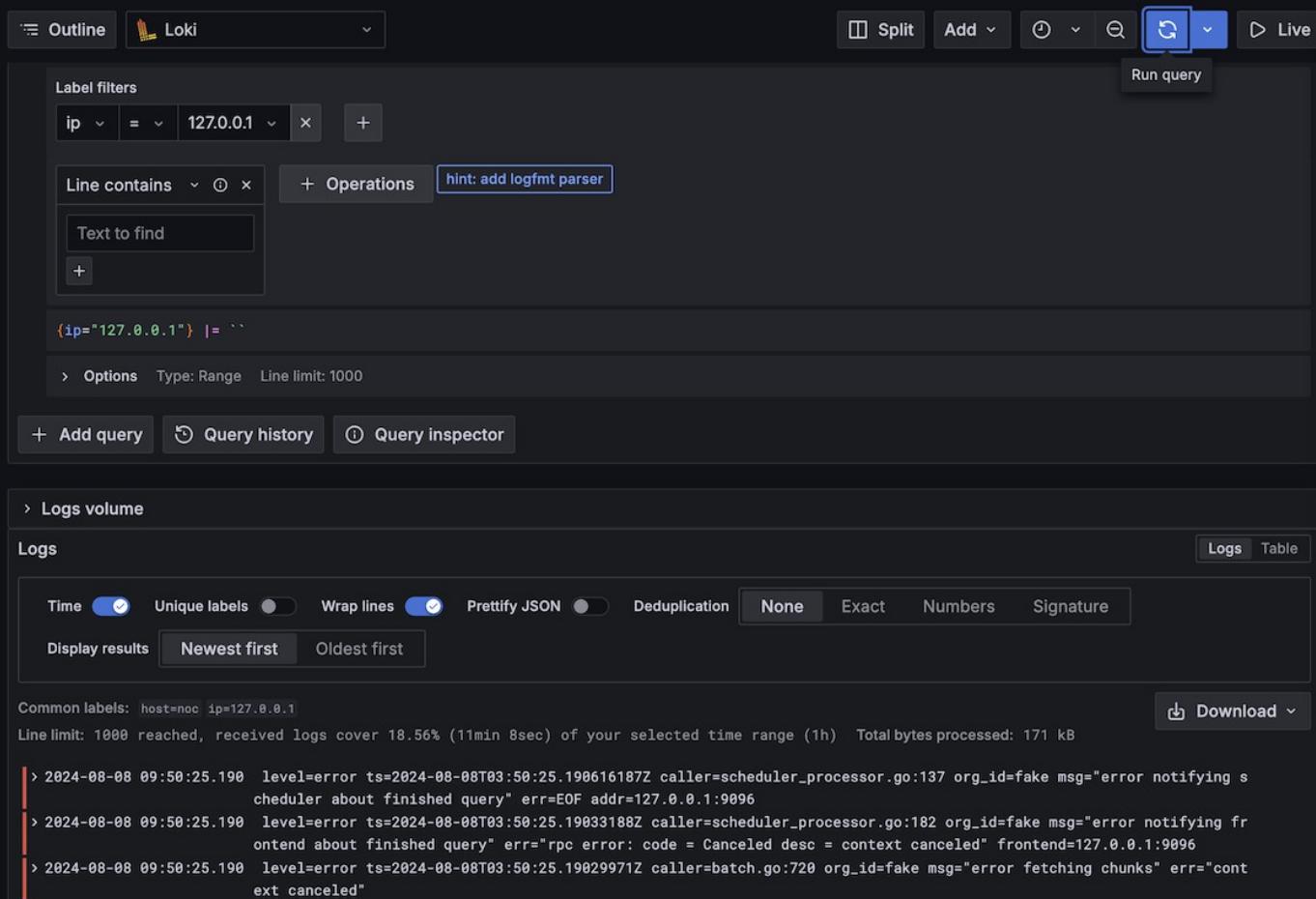
2021-12-04 22:02:35 gw1 publickey accepted for user: oxidized

2021-12-04 22:02:35 gw1 user oxidized logged in from 10.12.255.40 via ssh

Structured, e.g. JSON:

```
{"@timestamp": "2021-12-04T22:08:37.694Z", "type": "dns",  
 "dns": { "question": { "type": "A", "class": "IN", "name": "nsrc.org" },  
          "type": "answer", "resolved_ip": ["128.223.157.25"] } }
```

Other binary examples: Netflow records, SNMP traps, RADIUS accounting records


Logs compared to Metrics

- Logs are richer, more detailed, more granular
- Much larger volume generated
- Often required for debugging to know *exactly what happened and why*
- Metrics are good for spotting trends that prompt further investigation
- Authentication logs will tell you who has been using a given IP address at a given time

Syslog

- From network devices, Linux/Unix servers
- Traditionally sent over UDP, can also use TCP
- Software available to convert Windows events to syslog
- Various tools to capture and store the logs
 - rsyslog/syslog-ng, write to plain text files (grep to search)
 - log aggregators/pipelines: fluentd, filebeat, vector.dev, OTel collector, alloy
 - logstash + elasticsearch
 - loki + grafana; victoria-logs
 - also expensive commercial platforms (splunk, ...)

Demo: loki + grafana

The screenshot shows the Loki interface, a log search and visualization tool. At the top, there are tabs for 'Outline' and 'Loki', and a search bar with the text 'Loki'. The main area is titled 'Label filters' with a dropdown for 'ip' set to '127.0.0.1'. Below this is a 'Line contains' search bar with the placeholder 'Text to find'. The query bar contains the text '{ip="127.0.0.1"} |= ``'. The 'Options' section shows 'Type: Range' and 'Line limit: 1000'. At the bottom of the query area are buttons for '+ Add query', 'Query history', and 'Query inspector'. The main content area is titled 'Logs volume' and 'Logs'. It shows a list of log entries with the following content:

```
Common labels: host=loc ip=127.0.0.1
Line limit: 1000 reached, received logs cover 18.56% (11min 8sec) of your selected time range (1h) Total bytes processed: 171 kB

> 2024-08-08 09:50:25.190  level=error ts=2024-08-08T03:50:25.190616187Z caller=scheduler_processor.go:137 org_id=fake msg="error notifying scheduler about finished query" err=EOF addr=127.0.0.1:9096
> 2024-08-08 09:50:25.190  level=error ts=2024-08-08T03:50:25.19033188Z caller=scheduler_processor.go:182 org_id=fake msg="error notifying frontend about finished query" err="rpc error: code = Canceled desc = context canceled" frontend=127.0.0.1:9096
> 2024-08-08 09:50:25.190  level=error ts=2024-08-08T03:50:25.19029971Z caller=batch.go:720 org_id=fake msg="error fetching chunks" err="context canceled"
```

Configuration Management

Configuration backup

- Periodically connect to every network device and automatically download the configuration
- Store versions in a version control system
 - Configuration backups
- Compare with previous version, generate diffs
 - Send E-mail if there has been a change
- Software options: RANCID, Oxidized

Demo: Oxidized

Oxidized Stats Migration

versions / Diff version 10 - 9 for Node bdr1.campus3.ws.nsrc.org

Date of version: 07-08-24 at 10:56:47 AM
Number of lines changed: added 30 removed 1

Version 10 (16 hours 56 min ago)

Get Diffs!

Version 9 (18 hours 56 min ago)

```
diff --git a/bdr1.campus3.ws.nsrc.org b/bdr1.campus3.ws.nsrc.org
index 2b8c504..a62daa8 100644
--- a/bdr1.campus3.ws.nsrc.org
@@ -19,7 +19,7 @@
!
!
!
-! Last configuration change at 08:41:15 UTC Wed Aug 7 2024 by cndl
!
version 15.9
service timestamps debug datetime msec localtime show-timezone year
@@ -108,6 +108,8 @@ interface Null0
interface GigabitEthernet0/0
description Link to NREN
ip address 100.68.0.10 255.255.255.252

no ip redirects
no ip proxy-arp
ip nat outside
@@ -118,6 +120,8 @@ interface GigabitEthernet0/0
ipv6 address 2001:DB8:100:3::1/127
ipv6 nd prefix default no-advertise
ipv6 nd ra suppress all

!
interface GigabitEthernet0/1
description Link to Core Router
@@ -189,6 +193,7 @@ ip route 0.0.0.0 0.0.0.0 100.68.0.9
```

Version 10 (16 hours 56 min ago)

```
diff --git a/bdr1.campus3.ws.nsrc.org b/bdr1.campus3.ws.nsrc.org
index 2b8c504..a62daa8 100644
+++ b/bdr1.campus3.ws.nsrc.org
@@ -19,7 +19,7 @@
!
!
!
+! Last configuration change at 10:51:01 UTC Wed Aug 7 2024 by cndl
!
version 15.9
service timestamps debug datetime msec localtime show-timezone year
@@ -108,6 +108,8 @@ interface Null0
interface GigabitEthernet0/0
description Link to NREN
ip address 100.68.0.10 255.255.255.252
+ ip access-group from-nren-v4 in
+ ip access-group to-nren-v4 out
no ip redirects
no ip proxy-arp
ip nat outside
@@ -118,6 +120,8 @@ interface GigabitEthernet0/0
ipv6 address 2001:DB8:100:3::1/127
ipv6 nd prefix default no-advertise
ipv6 nd ra suppress all
+ ipv6 traffic-filter from-nren-v6 in
+ ipv6 traffic-filter to-nren-v6 out
!
interface GigabitEthernet0/1
description Link to Core Router
@@ -189,6 +193,7 @@ ip route 0.0.0.0 0.0.0.0 100.68.0.9
```

Alerting

Alerting

- Nagios and LibreNMS have alerting as core functionality
 - Smokeping can do it too
- Prometheus has Alertmanager (also karma/alerta dashboards)
 - Richness of PromQL allows for sophisticated alert conditions, e.g. "alert if rate of increase of disk space used predicts disk to be full in 24 hours"
- Grafana has its own alerting system
- Configuring alerts in all these is done differently
- Delivery options include E-mail, SMS, Slack, Telegram and commercial services like Pagerduty and VictorOps

Alerting

- Too many alerts are worse than too few alerts
 - "Alert fatigue"
 - Does this condition really require immediate attention?
 - Alerts should be urgent, important, actionable, and real
 - Less urgent conditions via summary E-mails, dashboards etc
- General principle: alert on symptoms, not causes
 - Alert on "web server not responding" more important than "database down"
 - These are the things that users care about
- Please read this "Philosophy on alerting":
<https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/>