

Introduction to Network Monitoring & Management

Campus Network Design & Operations Workshop

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(<http://creativecommons.org/licenses/by-nc/4.0/>)

UNIVERSITY OF OREGON

Last updated 30th June 2020

Objectives

- Introduce Core Concepts & Terminology
 - Network Monitoring & Management
 - What & Why we Monitor
 - Baseline Performance
 - Network Attack Detection
 - What & Why we Manage
 - Network Monitoring & Management Tools
 - The NOC: Consolidating Systems

Network Monitoring & Management

Monitoring

- Check the status of a network

Management

- Processes for successfully operating a network

Monitoring Systems & Services

- Systems
 - Routers
 - Switches
 - Servers
- Services
 - DNS
 - HTTP
 - SMTP
 - ...

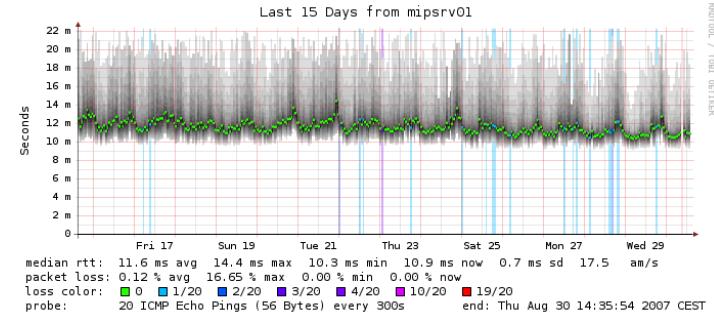
Why do we Monitor?

- Are Systems and Services Reachable?
- Are they Available?
- What's their Utilisation?
- What's their Performance
 - Round-trip times, throughout
 - Faults and Outages
- Have they been Configured or Changed?
- Are they under Attack?

Why do we Monitor?

- Know when there are problems – before our customers!
- Track resource utilisation, and bill our customers
- To Deliver on Service Level Agreements (SLAs)
 - What does management expect?
 - What do customers expect?
 - What does the rest of the Internet expect?
- To prove we're delivering
 - What would Five Nines take? 99.999%
- To ensure we meet SLAs in the future
 - Is our network about to fail? Become congested?

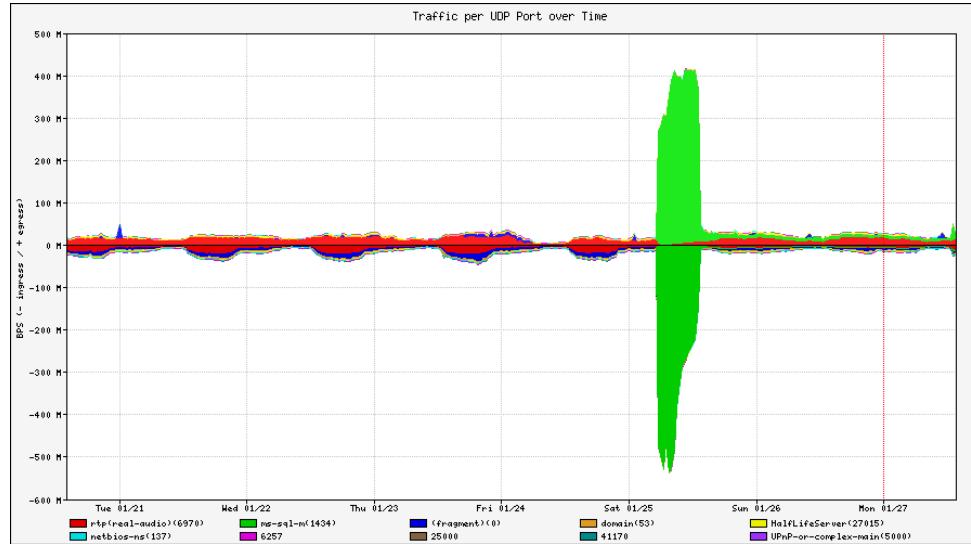
Uptime Expectations


- What does it take to deliver 99.9% uptime?
 - Only 44 minutes of downtime a month!
- Need to shut down one hour a week?
 - 168 hours in week
 - That's only 99.4% uptime $((168-1)/168 = .99404762\dots)$
- What does 99.999% uptime really mean?
 - 525960 (approx) minutes in a year
 - 99.999% uptime means 5 minutes and 15 seconds downtime!
 - For most of us this is just a fun exercise, not realistic.
- Maintenance might be negotiated in SLAs

Uptime Expectations

- What is meant by the network is “up”?
 - Does it work at every location?
 - Does it work at every host?
 - Is the network up if it works at the Boss’s desk?
 - Should the network be reachable from the Internet?
 - Does uptime include or exclude “Scheduled Maintenance”?

Establishing a Baseline


- **Monitoring** can be used to **Establish a Baseline**
- Baseline = What's normal for your network?
 - Typical latency across paths
 - Jitter across paths (shown in graph)
 - Load on links
 - Percent Resource Utilisation
 - Typical amounts of noise
 - Network scans & random attacks from the Internet
 - Dropped packets
 - Reported errors or failures

Detecting Attacks

- Deviation from baseline can mean an attack...
- Are there more flows than usual?
- Is the load higher on some servers or services?
 - CPU usage on border router?
- Have there been multiple service failures?

Any of these might mean attack

What do we Manage?

- Asset management: What equipment have we deployed?
 - What software is it running
 - What's its configuration (hardware & software)
 - Where is it installed
 - Do we have spares?
- Incident management: fault tracking and resolution
- Change management: Are we satisfying user requests?
 - Installing, moving, adding, or changing things
- Staff management

Why do we Manage?

- To ensure we meet business requirements for service level, incident response times, etc.
- To make efficient use of our resources (including staff)
- To learn from problems and make improvements to reduce future problems
- To plan for upgrades, and make purchasing decisions with sufficient lead time
- To help maintain a secure network

Key Network Management Tools

- Are some devices not responding or responding poorly, possibly because of a DoS attack or break-in?
 - Nagios
 - Smokeping
- Are you seeing unusual levels of traffic?
 - Cacti (SNMP)
 - LibreNMS (SNMP)
 - NfSen (NetFlow)

Network Traffic Analysis

- It is important to know what traverses your network
 - You learn about a new virus and find out that all infected machines connect to 128.129.130.131
 - Can you find out which machines have connected?
- Some tools that are available
 - Nfdump/NfSen, ntop-ng, Elastiflow, Akvorado: NetFlow
 - Snort, Suricata, Zeek: open source intrusion detection systems that are very useful to find viruses

Log Analysis

- Can be just as important as traffic analysis
- Central syslog server and gather logs from:
 - DHCP server, DNS servers, Mail servers, switches, routers, etc.
 - Now, you have data to look at
 - Given an IP, you can probably find user
- Lots of tools to correlate logs and alarm on critical events

NetFlow

- Routers can generate summary records about every traffic session seen
 - src addr, src port, dst addr, dst port, bytes/packets
- Software to record and analyze this data
 - e.g. Nfdump + NfSen, ntop-ng, Elastiflow, Akvorado
- Easily identify the top bandwidth users
- Drill down to find out what they were doing

Beware: Network Flows and NAT

- You need to see the real (internal) source IP addresses, not the shared external address
- If you are doing NAT on the border router that's not a problem
 - Generate Network flows on the interface before the NAT translation
- If you are doing NAT on a firewall then you need to generate Network flow data from the firewall, or from some device behind the firewall

Anomalous Traffic

- Intrusion Detection Systems (e.g. Snort, Suricata, Zeek) can identify suspicious traffic patterns, e.g.
 - machines using BitTorrent
 - machines infected with certain viruses/worms
 - some network-based attacks
- Typically connect IDS to a mirror port
- Risk of false positives, need to tune the rules
- Starting point for further investigation

Associating IP address to user

- ARP/DHCP logs map IP to MAC address
- Bridge tables map MAC address to switch port
 - Several tools can do this, e.g. Netdisco, LibreNMS
- 802.1x/RADIUS logs for wireless users
- AD logs for domain logins to workstations
- Network Access Control
 - e.g. PacketFence, forces wired users to login

Using Net Management

- BAYU: “Be Aware You’re Uploading”
- Detect P2P like BitTorrent and automatically send a warning E-mail telling the user to check whether what they’re doing is legal
- Amazingly effective when people realize they’re being watched!
- Some users may not be aware they had BitTorrent installed, and will uninstall it
- University of Oregon did this and BitTorrent use is now virtually non-existent.

Other Network Management Tools

- Ticket Systems: [RT \(Request Tracker\)](#)
 - Manage provisioning & support
- Configuration Management: [RANCID](#), [Oxidized](#)
 - Track network device configurations
- Network Documentation: [Netbox](#), [GLPI](#)
 - Inventory, Location, Ownership of Network Assets

NET MANAGEMENT	NETFLOW / IPFIX / SFLOW	LOGS / SIEM	DOCUMENTATION
Cacti	ElastiFlow	Beats	diagrams.net
LibreNMS	Filebeat/Packetbeat	Elasticsearch	GLPI
Nagios/check_mk	NfSen	Fluentd/fluent-bit	InvenTree
Netdata	ntop-ng	Loki	IPplan
OpenNMS	Akvorado	OSSEC/Wazuh	Netbox
Prometheus	SECURITY / NIDS	Sagan	Netdisco
Sensu	Nessus	TICKETING	phpIPAM
Zabbix	Prelude	OSticket	Snipe-IT
PERFORMANCE	Snort	OTRS	CHANGE MGMT
perfSONAR	Suricata	RT	Oxidized
Smokeping	Zeek	Trac	RANCID

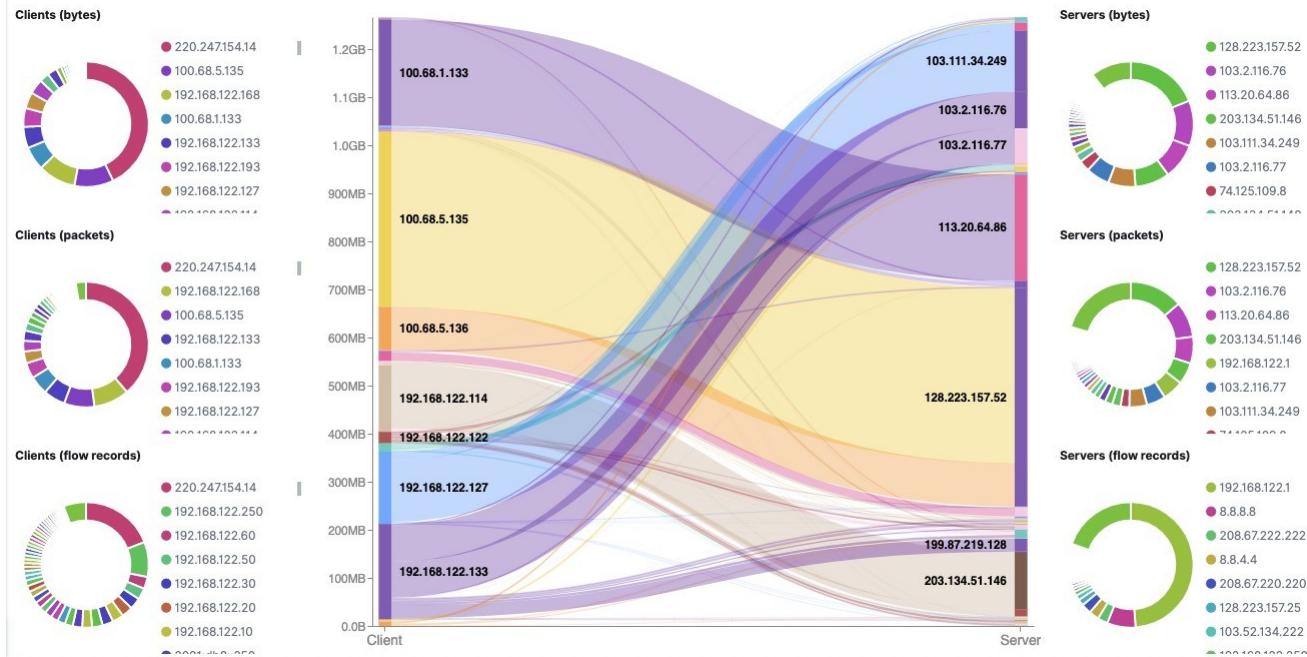
What about newer tools ("NMM 2.0")?

- Older tool characteristics:
 - Classic polling model
 - Coarse data collection (5 minute intervals typically)
 - Low disk space usage but inefficient usage of CPU and disk IOPS
- In current use includes:
 - Streaming telemetry
 - Push/Pull methodology and agent-based
 - Time series databases (large) often NoSQL based
- Common terminology you may have heard of:
 - ELK, TICK, Kafka, Prometheus Stacks
 - Grafana, InfluxDB, MongoDB
 - Beats, Elasticsearch, Elastiflow, fluentd, Kabana, etc...

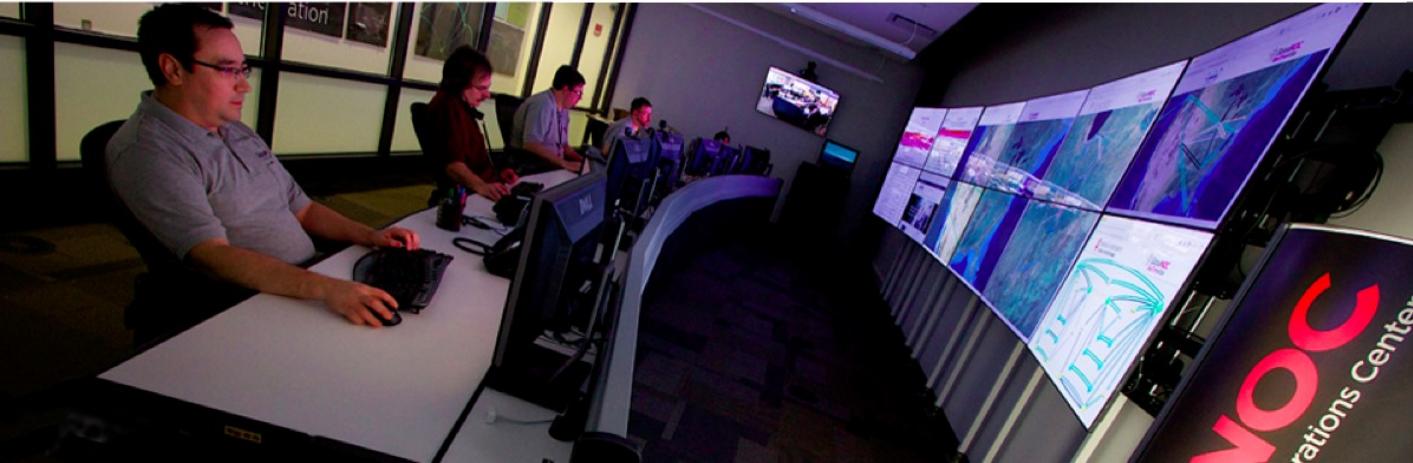
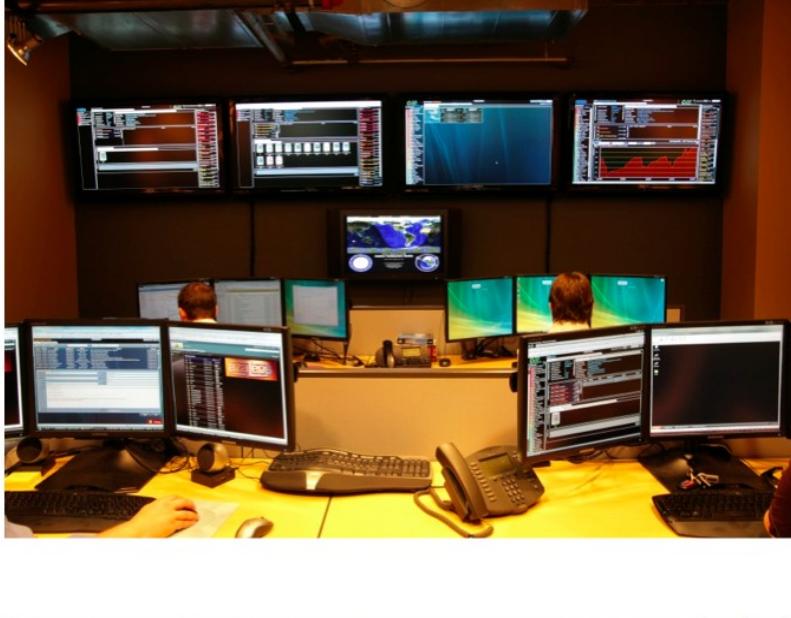
NMM 2.0: Netdata

- <https://github.com/netdata/netdata/wiki>
- Real-time, fine-grained, detailed host monitoring.

logstash


elasticsearch

kibana



NMM 2.0: ElastiFlow

- Takes the following flow protocols
 - Netflow – IPFix – Sflow
 - Instead of NfSen
 - <https://elastiflow.com> (commercial, limited free version available)

NOC: Consolidating NMM Systems

- NOC = Network Operations Center
 - Coordination of tasks, handling of network related incidents (ticketing system)
 - Status of network and services (monitoring tools)
 - Where the tools are accessed
 - Store of Documentation (wiki, database, repository => network documentation tool(s))
- NOC Location
 - NOC is an organizational concept
 - Does not need to be a place, or even a single server
 - Remote / Distributed NOC is valid with OOB Management

NMM Review

- Network Monitoring & Management
- What & Why we Monitor
- Baseline Performance & Attack Detection
- Network Attack Detection
- What & Why we Manage
- Network Monitoring & Management Tools
- The NOC: Consolidating Systems

Questions?