

Selecting Campus Switches and Routers

Campus Network Design & Operations Workshop

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(<http://creativecommons.org/licenses/by-nc/4.0/>)

UNIVERSITY OF OREGON

Last updated 4th August 2024

Choices!

- Minimum requirements for L2 devices
- Edge Switch
- Distribution Switch
- Campus Core Router
- Campus Border Router
- In all cases examples of mainstream vendor models are given to *guide* campus network administrators

Selecting Switches

Selecting Switches

- Minimum features:
 - Standards compliance
 - Encrypted management (SSH/HTTPS)
 - VLAN trunking
 - Spanning Tree (RSTP at least)
 - SNMP
 - At least v2 (v3 has better security)
 - Remote management and configuration backup
 - CLI preferred, also serial console desirable
 - Would also like centralized login authentication via TACACS+ or RADIUS

Selecting Switches

- Other recommended features:
 - DHCP Snooping
 - Prevent end-users from running a rogue DHCP server
 - Happens a lot with little wireless routers (Netgear, Linksys, etc) plugged in backwards
 - Uplink ports towards the legitimate DHCP server are defined as “trusted”. If DHCPOFFERs are seen coming from any untrusted port, they are dropped.
 - RA Guard
 - Prevent end-users from sending IPv6 Router Advertisements
 - Happens a lot with older Windows devices with IPv6 enabled, building automatic tunnels, and then announcing themselves as routers to the LAN

Selecting Edge Switches

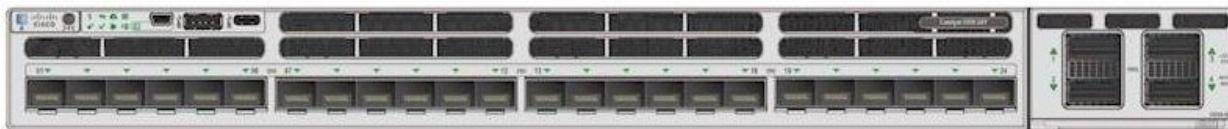
- In addition to the previous general features:
 - L2 device only – connecting end users!
 - 24 or 48 1Gbps copper ports
 - Opt for some Power over Ethernet (POE) ports if requirement to connect wireless access points and/or IP phones
 - Two 1Gbps/10Gbps uplink ports (copper or fibre)
- Only connects to the building distribution switch
 - 1Gbps uplink may be a bottleneck, 10Gbps is better
 - Fibre installation allows future growth to 10Gbps from edge to distribution by swapping SFP for SFP+

Example Low-Cost Edge Switch

- D-Link DGS-1510 series
 - Console, SSH, very Cisco-like CLI
 - SNMPv2/v3, DHCP inspection ...
 - 2x10G SFP+ and 2x1G SFP
 - "X"/"XMP" models have 4x10G SFP+
 - 24 or 48 1G copper ports
 - "P"/"XMP" models have PoE
- DGS-1210 even cheaper
 - No console port (sold as "web managed" but still has SSH)

Example Edge Switch

- Cisco Catalyst 1000
 - 24 or 48 10/100/1000 copper ports
 - PoE options if desired
 - Uplink options
 - 4x 1Gbps SFP or 4x 10Gbps SFP+
 - Picture shows the C1000-48T-4X-L



Selecting Distribution Switches

- In addition to the previous general features:
 - L2 device only – connecting edge switches!
 - 1 or 2 10Gbps fibre uplink ports
 - 12 or 24 copper or fibre ports
- Aggregates edge switches towards the core
 - Fibre ports for uplink
 - Sufficient copper and/or fibre ports for edge aggregation
 - May also connect end users on copper

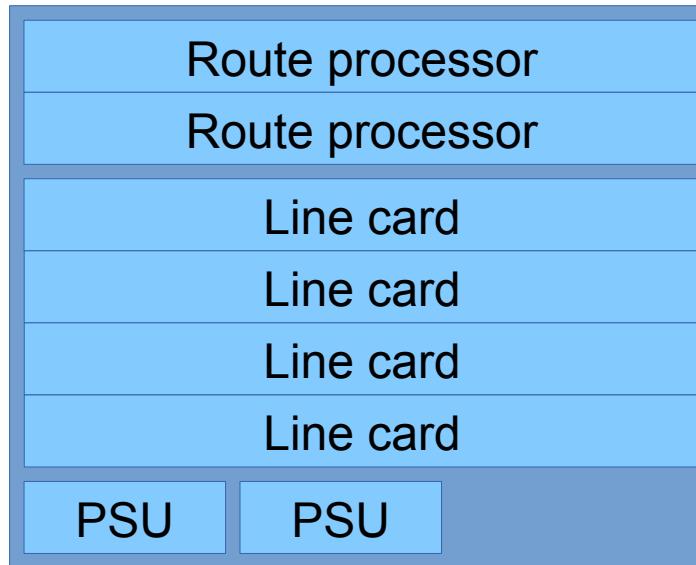
Example Distribution Switches

- Cisco Catalyst 1000
 - 24 10/100/1000 copper ports
 - Uplink with 4x 1Gbps SFP or 4x 10Gbps SFP+
- Cisco Catalyst 9300 (1G fibre) or 9300X (10G fibre)
 - 24 fibre ports (C9300-24S or C9300X-24Y)
 - 48 fibre ports (C9300-48S or C9300X-48Y)
 - Uplink modules range from 4x 1G (C9300) to 4x 100G (C9300X)

Summary

- Edge Switch
 - Focus on access ports
 - Fibre to building distribution, or is copper enough?
 - Do NOT need any L3 capability
- Distribution Switch
 - Fibre ports to connect Edge Switches
 - 10Gbps fibre link to Campus Core Router
 - Newer switches support 25Gbps with the same form factor SFP+
 - Do NOT need any L3 capability

Choosing a Core Router


Core router: essential features

- Lots of fiber ports
 - SFP (1G) or SFP+ (10G)
- Robust, line-rate routing (layer 3 forwarding)
 - IPv4 and IPv6, static routes
- Sufficient ARP (IPv4) and NDP (IPv6) entries
- DHCP relay (DHCP helper)
- Management: SSH, SNMPv2/v3
- OSPF (v2 and v3) or IS-IS

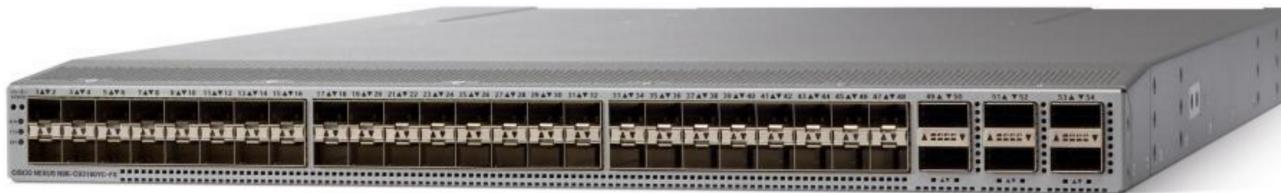
Core router: optional features

- HSRP/VRRP
- Mirror/span port
- Hardware redundancy (e.g. dual PSU)
 - But would you be better buying a whole second device?

One super-redundant device

- Chassis failures are not unknown ■■
- What would you do if that happened?

Two less-redundant devices


- Running “live-live” so everything is tested
- In emergency, can move key users to other side
- Key buildings can be dual-homed
 - This is where OSPF and HSRP/VRRP come in

Don't spend too much!

- Many “edge” L3 switches make fine campus core routers
- You won’t be carrying a full routing table
 - So a limit of say 16K routes isn’t a problem
 - Check how many IP interfaces/VLANs it supports
- Whatever you buy today will be obsolete in 3-5 years anyway
- If it’s cheap you can afford two

Cisco Nexus C36180YC

- 48 SFP/SFP+/SFP28 ports
 - Each port supports 1G/10G/25G ethernet
- 6x 40G/100G uplink ports
 - Will also operate as 4x25G or 4x10G with breakout cable
- Runs NX-OS
 - Very IOS like, but not the same
 - LAN Enterprise license needed for L3 routing protocols

Cisco Catalyst 9500-48Y4C

- 48 SFP/SFP+/SFP28 ports
 - Each port supports 1G/10G/25G ethernet
- 4x 40G/100G uplink ports
 - Check transceiver/DAC/AOC support
- Needs “Network Advantage” license for BGP/OSPF/IS-IS
 - Beware: Cisco 3/5/7-year license for “DNA Advantage” for L3 feature set

Juniper EX4650

- 48 SFP/SFP+/SFP28 ports
 - Each port supports 1G/10G/25G ethernet
- 8x 40G/100G uplink ports
 - Will also operate as 4x25G or 4x10G with breakout cable
- Premium Feature License needed for BGP and IS-IS support
 - Base Feature license has OSPF and RIPv2

UNIVERSITY OF OREGON

Juniper QFX5120-48Y

- 48 SFP/SFP+/SFP28 ports
 - Each port supports 1G/10G/25G ethernet
- 8x 40G/100G uplink ports
 - Will also operate as 4x25G or 4x10G with breakout cable
- Advanced 1 Feature License needed for OSPF/IS-IS/BGP support
 - Beware: 3/5-year license for Software Feature Licenses

Not big enough?!

- Above this you are looking at chassis switches
- Examples:
 - Cisco Catalyst 9600, Nexus 9000
 - Juniper EX9204/08/14, QFX10000

- But do you need anything this big and power hungry??

Maybe you already have one!

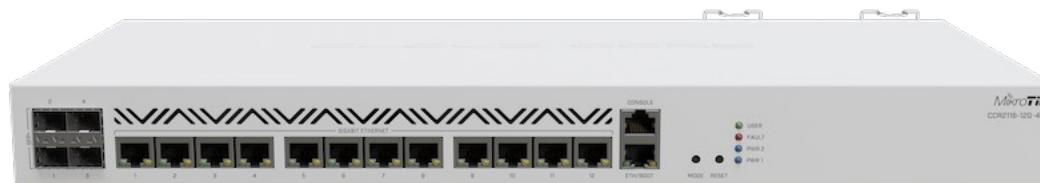
- Check the features of your existing devices
 - And check on forums for experiences of people using the same device for routing
- May need to enable it: “ip routing” or similar
- May need to update to latest stable firmware
- Test with a spare device if you have one

Choosing a Border Router

Border router: essential features

- Robust, line-rate routing (layer 3 forwarding)
 - IPv4 and IPv6, static routes
- Powerful CPU, Large Memory
- Management: SSH, SNMP, netflow/jflow/sflow/IPFIX
- OSPF (v2 and v3) or IS-IS
- NAT (if using internal private IPv4 address space)
- Hardware redundancy (e.g. dual PSU)
 - but would you be better buying a whole second device?

Border router: optional features


- If Multihoming:
 - Full support for BGP
 - Ability to carry full BGP table (if needed)
 - Support of all BGP Attributes, implementing BGP policies

Sizing a Border Router

- Consider connection to upstream provider
 - Allow for headroom far greater than link capacity
 - Bandwidth upgrades needed
 - Traffic growths larger than expectation
 - Dealing with Denial-of-Service Attacks from outside
- Physical chassis size is irrelevant
 - Smaller the better, reduced power and space requirements
- Border router needs:
 - Internal interface (to network core)
 - External interface(s) (to upstream provider(s))
 - 1 Rack Unit is usually enough

Typical Low-Cost Example

- MikroTik CCR2116-12G-4S+
 - 13 Gigabit Ethernet ports (copper)
 - 4 SFP/SFP+ ports
 - Real world throughput well in excess of 1Gbps
 - Only runs RouterOS v7, no "long term stable" release made yet
 - Some IPv6 issues, may have been improved in v7

Typical Mid-Cost Example

- Cisco 1161-8P
 - 8 Gigabit Ethernet LAN ports (copper)
 - 2 WAN ports (1 Copper/SFP)
 - Real world throughput around 1.8Gbps (IMIX)
 - Handles up to 800k routes (IPv4/IPv6)

Typical Mid-Range Example

- Cisco ASR1001-X
 - 1 RU chassis
 - 2x10GE and 6x1GE interfaces
 - 2.5Gbps throughput default
 - License activates 10GE ports allowing up to 20Gbps
- Cisco C8300-1N1S-4T2X
 - 1 RU chassis
 - 2x10GE and 4x1GE interfaces
 - Up to 6Gbps throughput (IMIX)

Typical High-End Examples

- Juniper MX204
 - Popular high-end border router
 - 4 built-in 100GE and 8 10GE interfaces
 - Throughput up to 400Gbps

- Cisco NCS540X-16Z4G8Q2C
 - 2 built-in 40/100GE, 8 10/25GE and 16 1/10GE interfaces
 - Throughput up to 300Mpps

Summary

- Core Router
 - Focus on scalability, sufficient CPU to ensure current and immediate future needs
 - Router or “L3 Switch” is often appropriate, as routing needs in the Core are not onerous
- Border Router
 - Physical size unimportant → small!
 - Needs v few interfaces
 - Needs big CPU to handle border functions
 - Consider future BGP needs

Questions?