Reverse DNS
Overview

- Principles
- Creating reverse zones
- Setting up nameservers
- Reverse delegation procedures
- IPv6 reverse delegations
- Current status
What is ‘Reverse DNS’?

- ‘Forward DNS’ maps names to numbers
 - svc00.apnic.net -> 202.12.28.131

- ‘Reverse DNS’ maps numbers to names
 - 202.12.28.131 -> svc00.apnic.net
Reverse DNS - why bother?

- Service denial
 - That only allow access when fully reverse delegated eg. anonymous ftp
- Diagnostics
 - Assisting in trace routes etc
- SPAM identifications
- Registration
 - Responsibility as a member and Local IR
In-addr.arpa

- Hierarchy of IP addresses
 - Uses ‘in-addr.arpa’ domain
 - INverse ADDRess
- IP addresses:
 - Less specific to More specific
 - 210.56.14.1
- Domain names:
 - More specific to Less specific
 - delhi.vsnl.net.in
 - Reversed in in-addr.arpa hierarchy
 - 14.56.210.in-addr.arpa
Principles

• Delegate maintenance of the reverse DNS to the custodian of the address block

• Address allocation is hierarchical
 – LIRs/ISPs -> Customers -> End users
Principles – DNS tree

- Mapping numbers to names - ‘reverse DNS’

Root DNS

net edu com arpa au

apnic

whois

RIR 202 203 210 211..

ISP 64

Customer 22

22.64.202.in-addr.arpa
Creating reverse zones

• Same as creating a forward zone file
 – SOA and initial NS records are the same as normal zone
 – Main difference
 • need to create additional PTR records

• Can use BIND or other DNS software to create and manage reverse zones
 – Details can be different
Creating reverse zones - contd

• Files involved
 – Zone files
 • Forward zone file
 – e.g. db.domain.net
 • Reverse zone file
 – e.g. db.192.168.254
 – Config files
 • <named.conf>
 – Other
 • Hints files etc.
 – Root.hints
Start of Authority (SOA) record

```
<domain.name.> CLASS SOA <hostname.domain.name.>
<mailbox.domain.name> ( 
  <serial-number>
  <refresh>
  <retry>
  <expire>
  <negative-caching> )
```

253.253.192.in-addr.arpa.
Pointer (PTR) records

- Create pointer (PTR) records for each IP address

or

131 IN PTR svc00.apnic.net.
A reverse zone example

$ORIGIN 1.168.192.in-addr.arpa.
@ 3600 IN SOA test.company.org. (sys\admin.company.org. 2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. ttl

NS ns.company.org.
NS ns2.company.org.

1 PTR gw.company.org.
 router.company.org.

2 PTR ns.company.org.

;auto generate: 65 PTR host65.company.org
$GENERATE 65-127 $ PTR host$.company.org.

$GENERATE 65-127 $ PTR host$.company.org.
What we covered so far

• Why Reverse DNS?
• The DNS tree?
• Files involved
• Essential Resource Records
• How to create reverse zones
Setting up the primary nameserver

- Add an entry specifying the primary server to the named.conf file

```
zone "<domain-name>" in {
  type master;
  file "<path-name>"; }
```

- `<domain-name>`
- `<type master>`
 - Define the name server as the primary
- `<path-name>`
 - location of the file that contains the zone records
Setting up the secondary nameserver

- Add an entry specifying the primary server to the named.conf file

```plaintext
zone "<domain-name>" in {
    type slave;
    file "<path-name>";
    Masters { <IP address> ; };
};
```

- `<type slave>` defines the name server as the secondary
- `<ip address>` is the IP address of the primary name server
- `<domain-name>` is same as before
- `<path-name>` is where the back-up file is
Reverse delegation requirements

- **/24 Delegations**
 - Address blocks should be assigned/allocated
 - At least two name servers

- **/16 Delegations**
 - Same as /24 delegations
 - APNIC delegates entire zone to member
 - Recommend APNIC secondary zone

- **< /24 Delegations**
 - Read “classless in-addr.arpa delegation”
APNIC & ISPs responsibilities

- APNIC
 - Manage reverse delegations of address block distributed by APNIC
 - Process members requests for reverse delegations of network allocations

- ISPs
 - Be familiar with APNIC procedures
 - Ensure that addresses are reverse-mapped
 - Maintain nameservers for allocations
 - Minimise pollution of DNS
Subdomains of in-addr.arpa domain

- **Subnetting on an Octet Boundary**
 - Similar to delegating subdomains of forward-mapping domains

- **Mapping problems**
 - In IPv4 the mapping is done on 8 bit boundaries (class full), address allocation is classless
 - Zone administration does not always overlap address administration
Subdomains of in-addr.arpa domain

• Example: an organisation given a /16
 – 192.168.0.0/16 (one zone file and further delegations to downstreams)
 – 168.192.in-addr.arpa zone file should have:

 0.168.192.in-addr.arpa. NS ns1.organisation0.com.
 0.168.192.in-addr.arpa. NS ns2.organisation0.com.
 ...
 ...
Subdomains of in-addr.arpa domain

• Example: an organisation given a /20
 – 192.168.0.0/20 (a lot of zone files!) – have to do it per /24)
 – Zone files

 0.168.192.in-addr.arpa.
 1.168.192.in-addr.arpa.
 2.168.192.in-addr.arpa.
 .
 .
 15.168.192.in-addr.arpa.
Subdomains of in-addr.arpa domain

• Example: case of a /24 subnetted with the mask 255.255.255.192
 – In-addr zone – 254.253.192.in-addr.arpa
 – Subnets
 • 192.253.254.0/26
 • 192.253.254.64/26
 • 192.253.254.128/26
 • 192.253.254.192/26
 – If different organisations has to manage the reverse-mapping for each subnet
 • Solution to follow…
Classless in-addr for 192.253.254/24

- CNAME records for each of the domain names in the zone
 - Pointing to domain names in the new subdomains

```
  ...
  ...
```
Classless in-addr for 192.253.254/24

• Using $\text{GENERATE} \ (db.\text{192.253.254 file})$

$\text{GENERATE 1-63 } $ IN CNAME

0-63.254.253.192.in-addr.arpa.
0-63.254.253.192.in-addr.arpa.

$\text{GENERATE 65-127 } $ IN CNAME

64-127.254.253.192.in-addr.arpa.
64-127.254.253.192.in-addr.arpa.

$.0-63.254.253.192.in-addr.arpa.$

$.64-127.254.253.192.in-addr.arpa.$

IN NS ns1.organisation1.com.
IN NS ns2.organisation1.com.

IN NS ns1.organisation2.com.
IN NS ns2.organisation2.com.

\ldots
Classless in-addr for 192.253.254.0/26

- Now, the zone data file for 0-63.254.253.192.in-addr.arpa can contain just PTR records for IP addresses 192.253.254.1 through 192.253.154.63

```plaintext
$TTL 1d
@ IN SOA ns1.organisation1.com. Root.ns1.organisation1.com.
  ( 1 ; Serial
      3h ; Refresh
      1h ; Retry
      1w ; Expire
       1h ) ; Negative caching TTL

IN NS ns1.organisation1.com.
IN NS ns2.organisation1.com.

1 IN PTR org1-name1.organisation1.com.
2 IN PTR org1-name2.organisation1.com.
3 IN PTR org1-name3.organisation1.com.
```
APNIC reverse delegation procedures

• Upon allocation, member is asked if they want /24 place holder domain objects with member maintainer
 – Gives member direct control

• Standard APNIC database object,
 – can be updated through online form or via email.

• Nameserver/domain set up verified before being submitted to the database.

• Protection by maintainer object
 – (current auths: CRYPT-PW, PGP).

• Zone file updated 2-hourly
APNIC reverse delegation procedures

• Complete the documentation
 • http://www.apnic.net/db/domain.html

• On-line form interface
 – Real time feedback
 – Gives errors, warnings in zone configuration
 • serial number of zone consistent across nameservers
 • nameservers listed in zone consistent
 – Uses database ‘domain’ object
Whois domain object

admin-c: DNS3-AP
tech-c: DNS3-AP
zone-c: DNS3-AP
nserver: ns.telstra.net
nserver: rs.arin.net
nserver: ns.myapnic.net
nserver: svc00.apnic.net
nserver: ns.apnic.net
mnt-by: MAINT-APNIC-AP
mnt-lower: MAINT-DNS-AP
changed: inaddr@apnic.net 19990810
source: APNIC
What we covered so far

- Why Reverse DNS?
- The DNS tree
- Files involved
- Essential Resource Records
- How to create reverse zones

- Setting up nameservers – config files
- APNIC reverse delegation requirements
- Classless in-addr.arpa
- APNIC reverse delegation procedures
Questions ?
IPv6 Reverse delegations
IPv6 representation in the DNS

- **Forward lookup support:** Multiple RR records for name to number
 - AAAA (Similar to A RR for IPv4)
 - A6 without chaining (prefix length set to 0)

- **Reverse lookup support:**
 - Reverse nibble format for zone ip6.int
 - Reverse nibble format for zone ip6.arpa
IPv6 forward and reverse mappings

- Existing A record will not accommodate IPv6’s 128 bit addresses
- BIND expects an A record’s record-specific data to be a 32-bit address (in dotted-octet format)
- An address record
 - AAAA (RFC 1886)
- A reverse-mapping domain
 - Ip6.int (now replaced by ip6.arpa)
The reverse DNS tree – with IPv6

Root DNS

- net
- edu
- com
- arpa
- int

- apnic
- whois

IP6

IPv6 Addresses

RIR
ISP
Customer

IPv6 Addresses

202
64
22
203
210
Root DNS

- arpa
- int
- IP6
- H1
- H8
- H10
- H12
- H32

ISP /32
Downstream /40
Customer /48
Devices /128

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.
IPv6 forward lookups

- Multiple addresses possible for any given name
 - Ex: in a multi-homed situation
- Can assign A records and AAAA records to a given name/domain
- Can also assign separate domains for IPv6 and IPv4
Sample forward lookup file

;; domain.edu
$TTL 86400
@ IN SOA ns1.domain.edu. root.domain.edu. (2002093000 ; serial - YYYYMMDDXX
21600 ; refresh - 6 hours
1200 ; retry - 20 minutes
3600000 ; expire - long time
86400) ; minimum TTL - 24 hours

;; Nameservers
IN NS ns1.domain.edu.
IN NS ns2.domain.edu.

;; Hosts with just A records
host1 IN A 1.0.0.1

;; Hosts with both A and AAAA records
host2 IN A 1.0.0.2
IN AAAA 2001:468:100::2
IPv6 reverse lookups

• IETF decided to restandardize IPv6 PTR RRs
 – They will be found in the IP6.ARPA namespace rather than under the IP6.INT namespace

• The ip6.int domains has been deprecated, but some hosts still use them
 – Supported for backwards compatibility

• Now using ip6.arpa for reverse
IPv6 reverse lookups - AAAA and ip6.arpa

- Address record four times longer than A
 - Quad A (AAAA)
- AAAA record is a parallel to the IPv4 A record
- It specifies the entire address in a single record
IPv6 reverse lookups - AAAA and ip6.arpa

- Example

| Ipv6-host | IN | AAAA | 4321::01234:56789ab |

- Each level of subdomain
 - Represents 4 bits

4.3.2.1.0.0.0.0.0.1.0.0.2.0.0.3.0.0.0.4.0.5.6.7.8.9.a.b
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.1.0.0.0.0.0.0.1.2.3.4.ip6.arpa.
IPv6 reverse lookups - PTR records

- Similar to the in-addr.arpa

```
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.1.2.3.4.ip6.arpa.
   IN    PTR    test.ip6.example.com.
```

- Example: reverse name lookup for a host with address 3ffe:8050:201:1860:42::1

```
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0  14400  IN  PTR  host.example.com.
```
Sample reverse lookup file

`; 0.0.0.0.0.1.0.8.6.4.0.1.0.0.2.rev
`; These are reverses for 2001:468:1000::/64)
`; File can be used for both ip6.arpa and ip6.int.
$TTL 86400
@ IN SOA ns1.domain.edu. root.domain.edu. (2002093000 ; serial - YYYYMMDDXX
21600 ; refresh - 6 hours
1200 ; retry - 20 minutes
3600000 ; expire - long time
86400) ; minimum TTL - 24 hours

`; Nameservers
IN NS ns1.domain.edu.
IN NS ns2.domain.edu.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR host1.ip6.domain.edu
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR host2.domain.edu

`; Can delegate to other nameservers in the usual way
;
// named.conf

zone "domain.edu" {
 type master;
 file "master/domain.edu";
}
zone "0.0.0.0.0.0.1.0.8.6.4.0.1.0.0.2.ip6.int" {
 type master;
 file "master/0.0.0.0.0.0.1.0.8.6.4.0.1.0.0.2.rev";
};
zone "0.0.0.0.0.0.1.0.8.6.4.0.1.0.0.2.ip6.arpa" {
 type master;
 file "master/0.0.0.0.0.0.1.0.8.6.4.0.1.0.0.2.rev";
};
Current Status – IPv6 in DNS

- A6 and Bit label specifications has been made experimental
 – RFC3363

- IETF standardized 2 different formats
 – AAAA and A6
 – Confusions on which format to deploy
 – More than one choice will lead to delays in the deployment of IPv6
What we covered so far in IPv6 reverse DNS

- IPv6 representation in the DNS
- IPv6 forward and reverse mappings
- AAAA and A6 records
- Current status
Questions ?
• DNS and BIND by Paul Albitz & Cricket Liu – O’Reilly

• Request Forms
 • http://www.apnic.net/db/revdel.html
 • http://www.apnic.net/db/domain.html

• Classless Delegations

• Common DNS configuration errors
 • http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1537.txt
• Domain name structure and delegation
 • http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1591.txt

• Domain administrators operations guide
 • http://ftp.apnic.net/ietf/rfc/rfc1000/rfc1033.txt

• Taking care of your domain
 • ftp://ftp.ripe.net/ripe/docs/ripe-114.txt

• Tools for DNS debugging