Border Gateway Protocol – BGP4

Philip Smith

E2 Workshop, AfNOG2006
Border Gateway Protocol (BGP4)

- Part 0: Why use BGP?
- Part 1: Forwarding and Routing (review)
- Part 2: Interior and Exterior Routing
- Part 3: BGP Building Blocks
- Part 4: Configuring BGP
- Case Study 1, Exercise 1: Single upstream
- Part 5: BGP Protocol Basics
- Part 6: BGP Protocol - more detail
- Case Study 2, Exercise 2: Local peer
- Part 7: Routing Policy and Filtering
- Exercise 3: Filtering on AS-path
- Exercise 4: Filtering on prefix-list
- Part 8: More detail than you want
- Exercise 5: Interior BGP
- Part 9: BGP and Network Design
Why use BGP?
Consider a typical small ISP

- Local network in one country
- May have multiple POPs in different cities
- Line to Internet
 - International line providing transit connectivity
 - Very, very expensive international line
- Doesn’t yet need BGP
Small ISP with one upstream provider

- BGP to other large ISPs
- Static routes or IGP routes to small customers
- Static default route to provider
- Static or IGP routes inside

- Provider
 - IGP routes inside
- Small ISP
 - Static or IGP routes inside
What happens with other ISPs in the same country

- Similar setup
- Traffic between you and them goes over
 - Your expensive line
 - Their expensive line
- Traffic can be significant
 - Your customers want to talk to their customers
 - Same language/culture
 - Local email, discussion lists, web sites
Keeping Local Traffic Local

- Upstream ISP
- Small ISP
- Small ISP
- Europe or USA
- Africa
Keeping Local Traffic Local

Upstream ISP

Small ISP (Europe or USA)

Small ISP (Africa)

Africa
Consider a larger ISP with multiple upstreams

- Large ISP multi-homes to two or more upstream providers
 - multiple connections
 - to achieve:
 - redundancy
 - connection diversity
 - increased speeds
- Use BGP to choose a different upstream for different destination addresses
A Large ISP with more than one upstream provider

- USA
- Upstream ISP
- Europe
- Upstream ISP
- Africa
- Large ISP
Terminology: “Policy”

- Where do you want your traffic to go?
 - It is difficult to get what you want, but you can try

- Control of how you accept and send routing updates to neighbours
 - Prefer cheaper connections
 - Prefer connections with better latency
 - Load-sharing, etc
“Policy” (continued)

- Implementing policy:
 - Accepting routes from some ISPs and not others
 - Sending some routes to some ISPs and not to others
 - Preferring routes from some ISPs over those from other ISPs
“Policy” Implementation

- You want to use a local line to talk to the customers of other local ISPs
 - local peering
- You do not want other local ISPs to use your expensive international lines
 - no free transit!
- So you need some sort of control over routing policies
- BGP can do this
Terminology: “Peering” and “Transit”

- **Peering**: getting connectivity to the network of other the ISP
 - ... and just that network, no other networks
 - Frequently at zero cost (zero-settlement)

- **Transit**: getting connectivity though the network of the other ISP to other networks
 - ... getting connectivity to rest of world (or part thereof)
 - Usually at cost (customer-provider relationship)
Terminology: “Aggregation”

- Combining of several smaller blocks of address space into a larger block

- For example:
 - 192.168.4.0/24 and 192.168.5.0/24 are contiguous address blocks
 - They can be combined and represented as 192.168.4.0/23...
 - ...with no loss of information!
“Aggregation” (continued)

- Useful because it hides detailed information about the local network:
 - The outside world needs to know about the range of addresses in use
 - The outside world does not need to know about the small pieces of address space used by different customers inside your network
“Aggregation” (continued)

- A jigsaw puzzle makes up a picture which is easier to see when the puzzle is complete!

- Aggregation is very necessary when using BGP to “talk” to the Internet
Summary:

Why do I need BGP?

- Multi-homing – connecting to multiple providers
 - upstream providers
 - local networks – regional peering to get local traffic

- Policy discrimination
 - controlling how traffic flows
 - do not accidentally provide transit to non-customers
BGP Part 1

Forwarding and Routing
Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the “directions”
Routing Table/RIB

- Routing table is managed by a routing protocol (e.g. OSPF or BGP)
- Often called the RIB – Routing Information Base
- Each routing protocol has its own way of managing its own routing tables
- Each routing protocol has a way of exchanging information between routers using the same protocol
Forwarding Table/FIB

- Forwarding table determines how packets are sent through the router
- Often called the FIB – Forwarding Information Base
- Made from routing table built by routing protocols
 - Best routes from routing tables are installed
- Performs the lookup to find next-hop and outgoing interface
- Switches the packet with new encapsulation as per the outgoing interface
Routing Tables Feed the Forwarding Table

- BGP 4 Routing Table
- OSPF – Link State Database
- Static Routes
IP Routing

- Each router or host makes its own routing decisions
- Sending machine does not have to determine the entire path to the destination
- Sending machine just determines the next-hop along the path (based on destination IP address)
 - This process is repeated until the destination is reached, or there’s an error
- Forwarding table is consulted (at each hop) to determine the next-hop
IP Routing

- Classless routing
 - route entries include
 - destination
 - next-hop
 - mask (prefix-length) indicating size of address space described by the entry

- Longest match
 - for a given destination, find longest prefix match in the routing table
 - example: destination is 35.35.66.42
 - routing table entries are 35.0.0.0/8, 35.35.64.0/19 and 0.0.0.0/0
 - All these routes match, but the /19 is the longest match
IP routing

- Default route
 - where to send packets if there is no entry for the destination in the routing table
 - most machines have a single default route
 - often referred to as a default gateway

- 0.0.0.0/0
 - matches all possible destinations, but is usually not the longest match
IP route lookup:
Longest match routing

Packet: Destination IP address: 10.1.1.1

Based on destination IP address

R2’s IP forwarding table

10.0.0.0/8 → R3
10.1.0.0/16 → R4
20.0.0.0/8 → R5
0.0.0.0/0 → R1

Most of 10.0.0.0/8 except for 10.1.0.0/16
IP route lookup: Longest match routing

Packet: Destination IP address: 10.1.1.1

Based on destination IP address

R2’s IP forwarding table

10.0.0.0/8 → R3
10.1.0.0/16 → R4
20.0.0.0/8 → R5
0.0.0.0/0 → R1

Most of 10.0.0.0/8 except for 10.1.0.0/16

10.1.0.0/16

10.1.1.1 & FF.00.00.00 vs. 10.0.0.0 & FF.00.00.00
Match! (length 8)
IP route lookup: Longest match routing

Packet: Destination IP address: 10.1.1.1

Based on destination IP address

R2’s IP forwarding table

10.0.0.0/8 → R3
10.1.0.0/16 → R4
20.0.0.0/8 → R5
0.0.0.0/0 → R1

10.1.1.1 & FF.FF.00.00 vs.
10.1.0.0 & FF.FF.00.00

Match! (length 16)
IP route lookup:
Longest match routing

Packet: Destination IP address: 10.1.1.1

Based on destination IP address

R2’s IP forwarding table

- 10.0.0.0/8 → R3
- 10.1.0.0/16 → R4
- 20.0.0.0/8 → R5
- 0.0.0.0/0 → R1

Most of 10.0.0.0/8 except for 10.1.0.0/16

10.1.1.1 & FF.00.00.00 vs.
20.0.0.0 & FF.00.00.00
No Match!
IP route lookup: Longest match routing

Based on destination IP address

Packet: Destination IP address: 10.1.1.1

Most of 10.0.0.0/8 except for 10.1.0.0/16

10.0.0.0/8 → R3
10.1.0.0/16 → R4
20.0.0.0/8 → R5
0.0.0.0/0 → R1

10.1.1.1 & 00.00.00.00 vs.
0.0.0.0 & 00.00.00.00
Match! (length 0)
IP route lookup: Longest match routing

Based on destination IP address

Packet: Destination IP address: 10.1.1.1

R2’s IP forwarding table

- 10.0.0.0/8 → R3
- **10.1.0.0/16** → R4
- 20.0.0.0/8 → R5
- 0.0.0.0/0 → R1

This is the longest matching prefix (length 16). “R2” will send the packet to “R4”.

Most of 10.0.0.0/8 except for 10.1.0.0/16
IP route lookup:
Longest match routing

- Most specific/longest match always wins!!
 - Many people forget this, even experienced ISP engineers
- Default route is 0.0.0.0/0
 - Can handle it using the normal longest match algorithm
 - Matches everything. Always the shortest match.
Static vs. Dynamic routing

- **Static routes**
 - Set up by administrator
 - Changes need to be made by administrator
 - Only good for small sites and star topologies
 - Bad for every other topology type

- **Dynamic routes**
 - Provided by routing protocols
 - Changes are made automatically
 - Good for network topologies which have redundant links (most!)
Dynamic Routing

- Routers compute routing tables dynamically based on information provided by other routers in the network.
- Routers communicate topology to each other via different protocols.
- Routers then compute one or more next hops for each destination – trying to calculate the most optimal path.
- Automatically repairs damage by choosing an alternative route (if there is one).
BGP Part 2

Interior and Exterior Routing
Interior vs. Exterior Routing Protocols

- **Interior gateway protocol (IGP)**
 - Automatic neighbour discovery
 - Under control of a single organisation
 - Generally trust your IGP routers
 - Routes go to all IGP routers
 - Usually not filtered

- **Exterior gateway protocol (EGP)**
 - Specifically configured peers
 - Connecting with outside networks
 - Neighbours are not trusted
 - Set administrative boundaries
 - Filters based on policy
IGP

- Interior Gateway Protocol
- Within a network/autonomous system
- Carries information about internal prefixes
- Examples – OSPF, ISIS, EIGRP
EGP

- Exterior Gateway Protocol
- Used to convey routing information between networks/ASes
- De-coupled from the IGP
- Current EGP is BGP4
Why Do We Need an EGP?

- Scaling to large network
 - Hierarchy
 - Limit scope of failure
- Define administrative boundary
- Policy
 - Control reachability to prefixes
Scalability and policy issues

- Just getting direct line is not enough
- Need to work out how to do routing
 - Need to get local traffic between ISP’s/peers
 - Need to make sure the peer ISP doesn’t use us for transit
 - Need to control what networks to announce, what network announcements to accept to upstreams and peers
Scalability: Not using static routes

- `ip route their_net their_gw`
- Does not scale
- Millions of networks around the world
Scalability: Not using IGP (OSPF)

- Serious operational consequences:
 - If the other ISP has a routing problem, you will have problems too
 - Your network prefixes could end up in the other ISP’s network — and vice-versa
 - Very hard to filter routes so that we don’t inadvertently give transit
Using BGP instead

- BGP = Border Gateway Protocol
- BGP is an **exterior** routing protocol
- Focus on routing **policy**, not topology
- BGP can make ‘groups’ of networks (Autonomous Systems)
- Good route filtering capabilities
- Ability to isolate from other’s problems
Border Gateway Protocol

- A Routing Protocol used to exchange routing information between networks
 - exterior gateway protocol
- Described in RFC4271
 - RFC4276 gives an implementation report on BGP-4
 - RFC4277 describes operational experiences using BGP-4
- The Autonomous System is BGP’s fundamental operating unit
 - It is used to uniquely identify networks with a common routing policy
BGP Part 3

BGP Building Blocks
BGP Building Blocks

- Autonomous System (AS)
- Types of Routes
- IGP/EGP
- DMZ
- Policy
- Egress
- Ingress
Autonomous System (AS)

- Collection of networks with same policy
- Single routing protocol
- Usually under single administrative control
- IGP to provide internal connectivity
Autonomous System (AS)

- Autonomous systems is a misnomer
 - Not much to do with freedom, independence, ...
- Just a handle for a group of networks that is under the same administrative control
- Identified by an AS number
Autonomous System (AS)

- Identified by ‘AS number’
 - example: AS16907 (ISPKenya)

- Examples:
 - Service provider
 - Multi-homed customers
 - Anyone needing policy discrimination for networks with different routing policies

- Single-homed network (one upstream provider) does not need an AS number
 - Treated like part of upstream AS
Autonomous System numbers

- 16-bit number, 1-65534
- AS 1 to AS 64511 are for normal use.
 - Assigned by registry, just like IP numbers
- AS 0 and AS 65535 are reserved
- Top 1024 AS numbers (AS64512-AS65534) are private numbers
 - see RFC1930 for details
Using AS numbers

- BGP can filter on AS numbers
 - Get all networks of the other ISP using one handle
 - Include future new networks without having to change routing filters
 - AS number for new network will be same
 - Can use AS numbers in filters with regular expressions
- BGP actually does routing computation on IP numbers
Routing flow and packet flow

For networks in AS1 and AS2 to communicate:

- AS1 must announce routes to AS2
- AS2 must accept routes from AS1
- AS2 must announce routes to AS1
- AS1 must accept routes from AS2
Egress Traffic

- Packets exiting the network
- Based on:
 - Route availability (what others send you)
 - Route acceptance (what you accept from others)
 - Policy and tuning (what you do with routes from others)
 - Peering and transit agreements
Ingress Traffic

- Packets entering your network
- Ingress traffic depends on:
 - What information you send and to whom
 - Based on your addressing and ASes
 - Based on others’ policy (what they accept from you and what they do with it)
Types of Routes

- **Static Routes**
 - configured manually

- **Connected Routes**
 - created automatically when an interface is ‘up’

- **Interior Routes**
 - Routes within an AS
 - learned via IGP (e.g. OSPF)

- **Exterior Routes**
 - Routes exterior to AS
 - learned via EGP (e.g. BGP)
Hierarchy of Routing Protocols

- Other ISPs
 - BGP4
 - BGP4 and OSPF/ISIS
 - BGP4
 - Local IXP
 - Customers
 - Static/BGP4
DeMarcation Zone (DMZ)

- Shared network between ASes
Basics of a BGP route

- Seen from output of “sh ip bgp”
- Prefix and mask — what IP addresses are we talking about?
 - 192.168.0.0/16 or 192.168.0.0/255.255.0.0
- Origin – How did the route originally get into BGP?
 - “?” — incomplete, “e” — EGP, “i” — IGP
- AS Path – what ASes did the route go through before it got to us?
 - “701 3561 1”
Configuring BGP
Basic commands
Getting routes into BGP
Basic BGP commands

Configuration commands

```text
router bgp <AS-number>
no auto-summary
no synchronization
neighbor <ip address> remote-as <as-number>
```

Show commands

```text
show ip bgp summary
show ip bgp neighbors
show ip bgp neighbor <ip address>
```
Inserting prefixes into BGP

- Two main ways to insert prefixes into BGP
 - network command
 - redistribute static
- Both require the prefix to be in the routing table
“network” command

- Configuration Example
  ```
  router bgp 1
  network 105.32.4.0 mask 255.255.254.0
  ip route 105.32.4.0 255.255.254.0 serial 0
  ```
- Matching route must exist in the routing table before network is announced!
- Prefix will have Origin code set to “IGP”
"redistribute static"

- Configuration Example:
  ```
  router bgp 1
  redistribute static
  ip route 105.32.4.0 255.255.254.0 serial0
  ```

- Static route must exist before redistribute command will work
- Forces origin to be "incomplete"
- Care required!
 - This will redistribute all static routes into BGP
 - Redistributing without using a filter is dangerous
“redistribute static”

- Care required with redistribution
 - redistribute <routing-protocol> means everything in the <routing-protocol> will be transferred into the current routing protocol
 - will not scale if uncontrolled
 - best avoided if at all possible
 - redistribute normally used with “route-maps” and under tight administrative control
 - “route-map” is a kind of filter
Aggregates and Null0

- Remember: matching route must exist in routing table before it will be announced by BGP

  ```
  router bgp 1
  network 105.32.0.0 mask 255.255.0.0
  ip route 105.32.0.0 255.255.0.0 null0 250
  ```

- Static route to null0 often used for aggregation
 - Packets will be sent here if there is no more specific match in the routing table
 - Distance of 250 ensures last resort

- Often used to nail up routes for stability
 - Can’t flap! 😊
BGP Case Study 1
and Exercise 1

Small ISP with one upstream provider
Case Study 1: Small ISP with one upstream provider

- Local network
- May have multiple POPs
- Line to Internet
 - International line providing transit connectivity
 - Very, very expensive
Case Study 1: Small ISP with one upstream provider

Provider “P”

IGP routes inside

BGP to other large ISPs

Static routes to small customers

Static default route to provider

Small ISP “A”

Static or IGP routes inside
Case Study 1: Routing Protocols

- Static routes or IGP inside small ISP “A”
- Static default route from small ISP “A” to upstream provider “P”
- IGP inside upstream provider “P”
- The two IGPs do not know about each other
- BGP between upstream provider “P” and outside world
Case Study 1: BGP is not needed

- No need for BGP between small ISP “A” and upstream provider “P”
- The outside world does not need to care about the link between provider “P” and customer “A”
- Hiding that information from the outside world helps with scaling
- **We will do an exercise using BGP even though it is not needed**
Exercise 1: Upstream provider with small customers

- This is not a realistic exercise
- In reality, a single-homed network would not use BGP
- Exercise 2 will be more realistic, adding a connection between two small ISPs in the same country
Exercise 1: Upstream provider & small customers
Exercise 1: BGP configuration

- Refer to “BGP cheat sheet”
- Connect cable to upstream provider
- “router bgp” for your AS number
- BGP “network” statement for your network
- BGP “neighbor” for upstream provider (IP address 196.200.220.12, remote AS 100)
Exercise 1: Transit through upstream provider

- Instructors configure AS 100 to send you all routes to other classroom ASes, and a default route
 - You can send traffic through AS 100 to more distant destinations
 - In other words, AS 100 provides “transit” service to you
Exercise 1: What you should see

- You should see routes to all other classroom networks.
- Try “show ip route” to see routing table
- Try “show ip bgp” to see BGP table
- Look at the “next hop” and “AS path”
- Try some pings and traceroutes.
Exercise 1: Did BGP “network” statement work?

- BGP “network” statement has no effect unless route exists in IGP (or static route)
- You might need to add a static route to make it work
 - ip route x.x.x.x m.m.m.m Null0
BGP Part 5

BGP Protocol Basics
Terminology
General Operation
Interior/Exterior BGP
BGP Protocol Basics

- Routing Protocol used between ASes
 - If you aren’t connected to multiple ASes you don’t need BGP
- Runs over TCP
BGP Protocol Basics

- Uses Incremental updates
 - sends one copy of the RIB at the beginning, then sends changes as they happen
- Path Vector protocol
 - keeps track of the AS path of routing information
- Many options for policy enforcement
Terminology

- **Neighbour**
 - Configured BGP peer

- **NLRI/Prefixed**
 - NLRI – network layer reachability information
 - Reachability information for an IP address & mask

- **Router-ID**
 - 32 bit integer to uniquely identify router
 - Comes from Loopback or Highest IP address configured on the router

- **Route/Path**
 - NLRI advertised by a neighbor
Terminology

- **Transit** – carrying network traffic across a network, usually for a fee
- **Peering** – exchanging routing information and traffic
 - your customers and your peers’ customers
 - network information only.
 - not your peers’ peers; not your peers’ providers.
- **Peering** also has another meaning:
 - BGP neighbour, whether or not transit is provided
- **Default** – where to send traffic when there is no explicit route in the routing table
BGP Basics ...

- Each AS originates a set of NLRI (routing announcements)
- NLRI is exchanged between BGP peers
- Can have multiple paths for a given prefix
- BGP picks the best path and installs in the IP forwarding table
- Policies applied (through attributes) influences BGP path selection
Interior BGP vs. Exterior BGP

- Interior BGP (iBGP)
 - Between routers in the same AS
 - Often between routers that are far apart
 - Should be a full mesh: every iBGP router talks to all other iBGP routers in the same AS

- Exterior BGP (eBGP)
 - Between routers in different ASes
 - Almost always between directly-connected routers (ethernet, serial line, etc.)
BGP Peers exchange Update messages containing Network Layer Reachability Information (NLRI)
BGP Peers – External (eBGP)

BGP speakers are called peers

Peers in different AS’s are called External Peers

Note: eBGP Peers normally should be directly connected.
BGP Peers – Internal (iBGP)

BGP speakers are called peers.

Peers in the same AS are called Internal Peers.

Note: iBGP Peers don’t have to be directly connected.
Configuring eBGP peers

- BGP peering sessions are established using the BGP “neighbor” command
 - eBGP is configured when AS numbers are different
Configuring iBGP peers

- BGP peering sessions are established using the BGP “neighbor” command
 - iBGP is configured when AS numbers are the same
Configuring iBGP peers: Full mesh

- Each iBGP speaker must peer with every other iBGP speaker in the AS
Configuring iBGP peers: Loopback interface

- Loopback interfaces are normally used as the iBGP peer connection end-points
Configuring iBGP peers

```
interface loopback 0
ip address 105.10.7.1 255.255.255.255

router bgp 100
network 100.100.1.0
neighbor 105.10.7.2 remote-as 100
neighbor 105.10.7.2 update-source loopback0
neighbor 105.10.7.3 remote-as 100
neighbor 105.10.7.3 update-source loopback0
```
Configuring iBGP peers

```
interface loopback 0
  ip address 105.10.7.2 255.255.255.255

router bgp 100
  network 100.100.5.0
  neighbor 105.10.7.1 remote-as 100
  neighbor 105.10.7.1 update-source loopback0
  neighbor 105.10.7.3 remote-as 100
  neighbor 105.10.7.3 update-source loopback0
```
Configuring iBGP peers

```
interface loopback 0
  ip address 105.10.7.3 255.255.255.255

router bgp 100
  network 100.100.1.0
  neighbor 105.10.7.1 remote-as 100
  neighbor 105.10.7.1 update-source loopback0
  neighbor 105.10.7.2 remote-as 100
  neighbor 105.10.7.2 update-source loopback0
```
BGP Part 6

BGP Protocol – A little more detail
BGP Updates — NLRI

- Network Layer Reachability Information
- Used to advertise feasible routes
- Composed of:
 - Network Prefix
 - Mask Length
BGP Updates — Attributes

- Used to convey information associated with NLRI
 - AS path
 - Next hop
 - Local preference
 - Multi-Exit Discriminator (MED)
 - Community
 - Origin
 - Aggregator
AS-Path Attribute

- Sequence of ASes a route has traversed
- Loop detection
- Apply policy
Next Hop Attribute

- Next hop to reach a network
- Usually a local network is the next hop in eBGP session

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.10.0.0/16</td>
<td>192.20.1</td>
<td>100</td>
</tr>
<tr>
<td>192.10.1.0/30</td>
<td>192.20.2.1</td>
<td></td>
</tr>
</tbody>
</table>

Example:
- AS 100
 - 160.10.0.0/16
- AS 200
 - 150.10.0.0/16
 - 192.20.2.1
- AS 300
 - 140.10.0.0/16
Next Hop Attribute

- Next hop to reach a network
- Usually a local network is the next hop in eBGP session
- Next Hop updated between eBGP Peers

Network	**Next-Hop**	**Path**
150.10.0.0/16 | 192.10.1.1 | 200
160.10.0.0/16 | 192.10.1.1 | 200 100
Next Hop Attribute

- Next hop not changed between iBGP peers
Next Hop Attribute (more)

- IGP is used to carry route to next hops
- Recursive route look-up
 - BGP looks into IGP to find out next hop information
 - BGP is not permitted to use a BGP route as the next hop
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent forwarding decision
Community Attribute

- 32-bit number
- Conventionally written as two 16-bit numbers separated by colon
 - First half is usually an AS number
 - That AS determines the meaning (if any) of the second half
- Carried in BGP protocol messages
 - Used by administratively-defined filters
 - Not directly used by BGP protocol (except for a few “well known” communities)
BGP Updates – Withdrawn Routes

- Used to “withdraw” network reachability
- Each withdrawn route is composed of:
 - Network Prefix
 - Mask Length
BGP Updates – Withdrawn Routes

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.10.0.0/16</td>
<td>192.168.10.2</td>
<td>321 200</td>
</tr>
<tr>
<td>192.192.25.0/24</td>
<td>192.168.10.2</td>
<td>321</td>
</tr>
</tbody>
</table>

Connectivity lost

Withdraw Routes 192.192.25.0/24
BGP Routing Information Base

BGP RIB

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
</tbody>
</table>

router bgp 100
network 160.10.1.0 255.255.255.0
network 160.10.3.0 255.255.255.0
no auto-summary

BGP ‘network’ commands are normally used to populate the BGP RIB with routes from the Route Table
BGP Routing Information Base

BGP RIB

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 160.10.0.0/16</td>
<td>0.0.0.0</td>
<td>i</td>
</tr>
<tr>
<td>* i</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>s> 160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>s> 160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
</tbody>
</table>

- `s>` indicates a summary route.
- `i` indicates the route is installed in the BGP RIB.

Route Table

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2.0/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160.10.1.0/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160.10.3.0/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.22.0.0/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.21.1.0/24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- `D` indicates a direct route.
- `R` indicates a remote route.
- `S` indicates a summary route.

BGP Commands

- **`router bgp 100`**
- **`network 160.10.0.0 255.255.0.0`**
- **`aggregate-address 160.10.0.0 255.255.0.0 summary-only`**
- **`no auto-summary`**

BGP ‘aggregate-address’ commands may be used to install summary routes in the BGP RIB.
BGP Routing Information Base

BGP RIB

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 160.10.0.0/16</td>
<td>0.0.0.0</td>
<td>i</td>
</tr>
<tr>
<td>* i</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>s 160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>s 160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>* 192.1.1.0/24</td>
<td>192.20.3.1</td>
<td>?</td>
</tr>
</tbody>
</table>

router bgp 100
network 160.10.0.0 255.255.0.0
redistribute static route-map foo
no auto-summary
access-list 1 permit 192.1.0.0 0.0.255.255
route-map foo permit 10
match ip address 1

BGP ‘redistribute’ commands can also be used to populate the BGP RIB with routes from the Route Table

Route Table

D 10.1.2.0/24
D 160.10.1.0/24
D 160.10.3.0/24
R 153.22.0.0/16
S 192.1.1.0/24
BGP Routing Information Base

- **IN Process**
 - Receives path information from peers
 - Results of BGP path selection placed in the BGP table
 - "best path" flagged (denoted by "\(>\)"")

BGP RIB

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>173.21.0.0/16</td>
<td>192.20.2.1</td>
<td>100</td>
</tr>
<tr>
<td>>1160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>>1160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>>> 173.21.0.0/16</td>
<td>192.20.2.1</td>
<td>100</td>
</tr>
</tbody>
</table>

OUT Process
BGP Routing Information Base

IN Process

BGP RIB

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*>160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>*>160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>*> 173.21.0.0/16</td>
<td>192.20.2.1</td>
<td>100</td>
</tr>
</tbody>
</table>

OUT Process

Update

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>200</td>
</tr>
<tr>
<td>160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>200</td>
</tr>
<tr>
<td>173.21.0.0/16</td>
<td>192.20.2.1</td>
<td>200 100</td>
</tr>
</tbody>
</table>

• BGP “out” process
 • builds update using info from RIB
 • may modify update based on config
 • Sends update to peers
BGP Routing Information Base

BGP RIB

<table>
<thead>
<tr>
<th>Network</th>
<th>Next-Hop</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 160.10.1.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>*> 160.10.3.0/24</td>
<td>192.20.3.1</td>
<td>i</td>
</tr>
<tr>
<td>*> 173.21.0.0/16</td>
<td>192.20.2.1</td>
<td>100</td>
</tr>
</tbody>
</table>

- Best paths installed in routing table if:
 - prefix and prefix length are unique
 - lowest “protocol distance”

Route Table

- D 10.1.2.0/24
- D 160.10.1.0/24
- D 160.10.3.0/24
- R 153.22.0.0/16
- S 192.1.1.0/24
- B 173.21.0.0/16
An Example...

Learns about 35.0.0.0/8 from F & D
BGP Case Study 2 and Exercise 2

Small ISPs in the same locality connect to each other
Case Study 2: Another ISP in the same country

- Similar setup
- Traffic between you and them goes over
 - Your expensive line
 - Their expensive line
- Traffic can be significant
 - Same language/culture
 - Traffic between your and their customers
- This wastes money
Case Study 2: Another ISP in the same country

Upstream ISP

Expensive links

Small ISP

Small ISP

Europe or USA

Africa
Case Study 2: Bringing down costs

- Local (national) links are usually much cheaper than international ones
- Might be interesting to get direct link between you and them
 - Saving traffic on expensive lines
 - better performance, cheaper
 - No need to send traffic to other ISP down the street via New York!
Case Study 2: Keeping Local Traffic Local
Exercise 2: Connect to another local ISP
Exercise 2: BGP configuration

- Refer to “BGP cheat sheet”.
- Add to previous configuration.
- Connect cable to local peer.
- No filters yet.
Exercise 2: What you should see

- You should see multiple routes to each destination
 - direct route to your peer
 - transit route through provider (AS 100)
 - any more?
Exercise 2: What you should see

- Try “show ip route” to see forwarding table
- Try “show ip bgp” to see BGP information
- Look at the “next hop” and “AS path”
- Try some pings and traceroutes.
Exercise 2: Do you see transit routes through your peers?

- Are your peer ASes sending you transit routes as well as peering routes?
 - Do you want transit through them?
- Are you sending transit routes to your peers?
 - Do you want your peers to have transit through you?
- We will fix this later
BGP Part 7

Routing Policy
Filtering
Terminology: “Policy”

- Where do you want your traffic to go?
 - It is difficult to get what you want, but you can try
- Control of how you accept and send routing updates to neighbors
 - prefer cheaper connections, load-sharing, etc.
- Accepting routes from some ISPs and not others
- Sending some routes to some ISPs and not others
- Preferring routes from some ISPs over others
Routing Policy

- Why?
 - To steer traffic through preferred paths
 - Inbound/Outbound prefix filtering
 - To enforce Customer-ISP agreements

- How?
 - AS based route filtering – filter list
 - Prefix based route filtering – prefix list
 - BGP attribute modification – route maps
 - Complex route filtering – route maps
Filter list rules:

Regular Expressions

- Regular Expression is a pattern to match against an input string
- Used to match against AS-path attribute
- ex: ^3561_.*100_.*1$
- Flexible enough to generate complex filter list rules
Regular expressions (cisco specific)

- ^ matches start
- $ matches end
- _ matches start, or end, or space (boundary between words or numbers)
- .* matches anything (0 or more characters)
- [abc] matches a, or b, or c.
- There are many more possibilities
Filter list – using as-path access list

ip as-path access-list 1 permit _3561$
ip as-path access-list 2 deny _35$
ip as-path access-list 2 permit .*

router bgp 100
 neighbor 171.69.233.33 remote-as 33
 neighbor 171.69.233.33 filter-list 1 in
 neighbor 171.69.233.33 filter-list 2 out

Listen to routes originated by AS 3561. Implicit deny everything else inbound.

Don’t announce routes originated by AS 35, but announce everything else (outbound).
Policy Control – Prefix Lists

- Per neighbor prefix filter
 - incremental configuration
- High performance access list
- Inbound or Outbound
- Based upon network numbers (using CIDR address/mask format)
- First relevant “allow” or “deny” rule wins
- Implicit Deny All as last entry in list
Prefix Lists – Examples

- Deny default route
 ip prefix-list Example deny 0.0.0.0/0

- Permit the prefix 35.0.0.0/8
 ip prefix-list Example permit 35.0.0.0/8

- Deny the prefix 172.16.0.0/12, and all more-specific routes
 ip prefix-list Example deny 172.16.0.0/12 ge 12
 “ge 12” means “prefix length /12 or longer”. For example, 172.17.0.0/16 will also be denied.

- In 192.0.0.0/8, allow any /24 or shorter prefixes
 ip prefix-list Example permit 192.0.0.0/8 le 24
 This will not allow any /25, /26, /27, /28, /29, /30, /31 or /32
Prefix Lists – More Examples

- In 192/8 deny /25 and above

ip prefix-list Example deny 192.0.0.0/8 ge 25

 This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the address block 192.0.0.0/8

 It has the same effect as the previous example

- In 192/8 permit prefixes between /12 and /20

ip prefix-list Example permit 192.0.0.0/8 ge 12 le 20

 This denies all prefix sizes /8, /9, /10, /11, /21, /22 and higher in the address block 193.0.0.0/8

- Permit all prefixes

ip prefix-list Example 0.0.0.0/0 le 32
Policy Control Using Prefix Lists

- Example Configuration

```plaintext
router bgp 200
    network 215.7.0.0
    neighbor 220.200.1.1 remote-as 210
    neighbor 220.200.1.1 prefix-list PEER-IN in
    neighbor 220.200.1.1 prefix-list PEER-OUT out

! ip prefix-list PEER-IN deny 218.10.0.0/16
ip prefix-list PEER-IN permit 0.0.0.0/0 le 32
ip prefix-list PEER-OUT permit 215.7.0.0/16
ip prefix-list PEER-OUT deny 0.0.0.0/0 le 32
```

- Accept everything except our network from our peer
- Send only our network to our peer
Policy Control – Route Maps

- A route-map is like a “program” for Cisco IOS
- Has “line” numbers, like programs
- Each line is a separate condition/action
- Concept is basically:

 if *match* then do *expression* and *exit*
 else
 if *match* then do *expression* and *exit*
 else *etc*
Route-map match & set clauses

- **Match Clauses**
 - AS-path
 - Community
 - IP address

- **Set Clauses**
 - AS-path prepend
 - Community
 - Local-Preference
 - MED
 - Origin
 - Weight
 - Others...
Route Map: Example One

```
router bgp 300
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 route-map SETCOMMUNITY out

route-map SETCOMMUNITY permit 10
  match ip address 1
  match community 1
  set community 300:100

access-list 1 permit 35.0.0.0
ip community-list 1 permit 100:200
```
Route Map: Example Two

- Example Configuration as AS PATH prepend

```
router bgp 300
  network 215.7.0.0
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 route-map SETPATH out!

route-map SETPATH permit 10
  set as-path prepend 300 300
```

- Use your own AS number for prepending
 - Otherwise BGP loop detection will cause disconnects
BGP Exercise 3

Filtering peer routes using AS-path regular expression
Exercise 3: Filtering peer routes using AS-path

Connections to local peers
Filter all routes here!
Exercise 3: Filtering peer routes using AS-path

- Create “ip as-path access-list <number>” to match your peer’s routes
 - ip as-path access-list 1 permit ^1$

- Apply the filters
 - “neighbor <address> filter-list <number> in”
Exercise 3: What you should see

- From peers: only their routes, no transit
 - They send all routes, but you filter
- To peers: your routes and transit routes
 - They should ignore the transit routes
 - But it’s bad that you send transit routes
- From upstream: all routes
- To upstream: all routes
 - This is bad
Exercise 3: Did it work?

- “show ip route” – your forwarding table
- “show ip bgp” – your BGP table
- “show ip bgp neighbor xxx received-routes” – from your neighbour before filtering
- “show ip bgp neighbor xxx routes” – from neighbour, after filtering
- “show ip bgp neighbor advertised-routes” – to neighbour, after filtering
BGP Exercise 4

Filtering peer routes using prefix-lists
Exercise 4: Filtering peer routes using prefix-lists

Filter outbound but not inbound

Connections to local peers

Filter all routes here!
Exercise 4: Filtering peer routes using prefix-list

- Create “ip prefix-list my-routes” to match your own routes
- Create “ip prefix-list peer-as-xxx” to match your peer’s routes
- Apply the filters to your peers
 - “neighbor xxx prefix-list my-routes out”
 - “neighbor xxx prefix-list peer-as-xxx in”
- Apply the outbound filter to your upstream provider
Exercise 4: What you should see

- From peers: only their routes, no transit
- To peers: only your routes, no transit
- From upstream: all routes
- To upstream: only your routes, no transit

- We still trust the upstream provider too much. Should filter it too!
 - See “ip prefix-list sanity-filter” in cheat sheet
Exercise 4: Did it work?

- “show ip route” - your forwarding table
- “show ip bgp” - your BGP table
- “show ip bgp neighbor xxx received-routes” - from your neighbour before filtering
- “show ip bgp neighbor xxx routes” - from neighbour, after filtering
- “show ip bgp neighbor xxx advertised-routes” - to neighbour, after filtering
BGP Part 8

More detail than you want

BGP Attributes
Synchronization
Path Selection
BGP Path Attributes: Why?

- Encoded as Type, Length & Value (TLV)
- Transitive/Non-Transitive attributes
- Some are mandatory
- Used in path selection
- To apply policy for steering traffic
BGP Path Attributes...

- Origin
- AS-path
- Next-hop
- Multi-Exit Discriminator (MED)
- Local preference
- BGP Community
- Others...
AS-PATH

- Updated by the sending router with its AS number
- Contains the list of AS numbers the update traverses.
- Used to detect routing loops
 - Each time the router receives an update, if it finds its own AS number, it discards the update
Sequence of ASes a route has traversed

Loop detection
Next-Hop

- Next hop router to reach a network
- Advertising router/Third party in EBGP
- Unmodified in iBGP
Next Hop...

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent forwarding decision
Local Preference

- Not used by eBGP, mandatory for iBGP
- Default value of 100 on Cisco IOS
- Local to an AS
- Used to prefer one exit over another
- Path with highest local preference wins
Multi-Exit Discriminator

- Non-transitive
- Represented as a numerical value
 - Range 0x0 – 0xffffffff
- Used to convey relative preference of entry points to an AS
- Comparable if the paths are from the same AS
- Path with the lowest MED wins
- IGP metric can be conveyed as MED
Multi-Exit Discriminator (MED)
Origin

- Conveys the origin of the prefix
- Three values:
 - IGP – from BGP network statement
 - E.g. – network 35.0.0.0
 - EGP – redistributed from EGP (not used today)
 - Incomplete – redistributed from another routing protocol
 - E.g. – redistribute static
- IGP < EGP < incomplete
 - Lowest origin code wins
Communities

- Transitive, Non-mandatory
- Represented as a numeric value
 - $0x0$ – $0xffffffff$
 - Internet convention is ASn: $<0-65535>$
- Used to group destinations
- Each destination could be member of multiple communities
- Flexibility to scope a set of prefixes within or across AS for applying policy
Communities

Service Provider AS 200

<table>
<thead>
<tr>
<th>Community</th>
<th>Local Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>201:110</td>
<td>110</td>
</tr>
<tr>
<td>201:120</td>
<td>120</td>
</tr>
</tbody>
</table>

192.68.1.0/24

Customer AS 201

Community: 201:110

Community: 201:120
Weight

- Special Cisco attribute used when there is more than one route to same destination.
- Local to the router on which it is assigned, and not propagated in routing updates.
- Default is 32768 for paths that the router originates and zero for other paths.
- Routes with a higher weight are preferred when there are multiple routes to the same destination.
Administrative Distance

- Routes can be learned via more than one protocol
 - Used to discriminate between them
- Route with lowest distance installed in forwarding table
- BGP defaults
 - Local routes originated on router: 200
 - iBGP routes: 200
 - eBGP routes: 20
- Does not influence the BGP path selection algorithm but influences whether BGP learned routes enter the forwarding table
Synchronization

- C is not running BGP
- A won’t advertised 35/8 to D until the IGP is in sync
- Turn synchronization off!

  ```
  router bgp 1880
  no synchronization
  ```
Synchronization

- In Cisco IOS, BGP does not advertise a route before all routers in the AS have learned it via an IGP
 - This is a default which is unhelpful to most ISPs
- Disable synchronization if:
 - AS doesn’t pass traffic from one AS to another, or
 - All transit routers in AS run BGP, or
 - iBGP is used across backbone
- You should always use iBGP
 - so, always use “no synchronization”
BGP route selection (bestpath)

- Route has to be synchronized
 - Only if synchronization is enabled
 - Prefix must be in forwarding table
- Next-hop has to be accessible
 - Next-hop must be in forwarding table
- Largest weight
- Largest local preference
BGP route selection (bestpath)

- Locally sourced
 - Via redistribute or network statement
- Shortest AS path length
 - Number of ASes in the AS-PATH attribute
- Lowest origin
 - IGP < EGP < incomplete
- Lowest MED
 - Compared from paths from the same AS
BGP route selection (bestpath)

- External before internal
 - Choose external path before internal
- Closest next-hop
 - Lower IGP metric, nearest exit to router
- Lowest router ID
- Lowest IP address of neighbour
BGP Route Selection...

AS 400’s Policy to reach AS100
- AS 200 preferred path
- AS 300 backup

Increase AS path attribute length by at least 1
BGP Exercise 5

Interior BGP (iBGP)
Exercise 5: Configure iBGP

- Tables join into pairs, with two routers per AS
- Each AS has two upstream providers
- OSPF and iBGP within your AS
- eBGP to your upstream provider
- Filter everything!
Exercise 5: Configure iBGP
Exercise 5: Configure iBGP

- The two routers in your AS should talk iBGP to each other
 - no filtering here
 - use “update-source loopback 0”
- One of your routers talks eBGP to AS 100, and one talks to AS 200.
 - Filter!
 - Send only your routes
 - Accept all except bogus routes (“sanity-filter”)
Exercise 5: What you should see

- Directly from AS 100: routes to entire classroom
- Directly from AS 200: routes to entire classroom
- From your iBGP neighbour: indirect routes through AS 100 or AS 200 to entire classroom
- Which route do you prefer?
Stub AS

- Enterprise network, or small ISP
- Typically no need for BGP
- Point default towards the ISP
- ISP advertises the stub network to Internet
- Policy confined within ISP policy
Stub AS

AS 100
Customer

AS 101
Provider

A
B
Multi-homed AS

- Enterprise network or small ISP
- Only border routers speak BGP
- iBGP only between border routers
- Rest of network either has:
 - exterior routes redistributed in a controlled fashion into IGP...
 - ...or use defaults (much preferred!)
More details on multihoming coming up...
Service Provider Network

- iBGP used to carrier exterior routes
 - No redistribution into IGP
- IGP used to track topology inside your network
- Full iBGP mesh required
 - Every router in ISP backbone should talk iBGP to every other router
 - This has scaling problems, and solutions (e.g. route reflectors)
Common Service Provider Network

AS 100

provider

AS 200

AS 300

AS 400
Router A:
 interface loopback 0
 ip address 20.200.0.1 255.255.255.255
!
 router bgp 100
 neighbor 10.200.0.2 remote-as 200
 neighbor 10.200.0.2 update-source loopback0
 neighbor 10.200.0.2 ebgp-multihop 2
!
 ip route 10.200.0.2 255.255.255.255 <DMZ-link1, link2>
Load-sharing – multiple paths from the same AS

Router A:

router bgp 100
neighbor 10.200.0.1 remote-as 200
neighbor 10.300.0.1 remote-as 200
maximum-paths 2

Note: A still only advertises one “best” path to ibgp peers
Redundancy – Multi-homing

- Reliable connection to Internet
- 3 common cases of multi-homing
 - default from all providers
 - customer + default from all providers
 - full routes from all providers

- Address Space
 - comes from upstream providers, or
 - allocated directly from registries
Default from all providers

- Low memory/CPU solution
- Provider sends BGP default
 - provider is selected based on IGP metric
- Inbound traffic decided by providers’ policy
 - Can influence using outbound policy, example: AS-path prepend
Default from all providers

Provider
AS 200

Provider
AS 300

Receive default from upstreams

Receive default from upstreams

AS 400
Customer prefixes plus default from all providers

- Medium memory and CPU solution
- Granular routing for customer routes, default for the rest
 - Route directly to customers as those have specific policies
- Inbound traffic decided by providers’ policies
 - Can influence using outbound policy
Customer routes from all providers

Customer
AS 100
160.10.0.0/16

Provider
AS 200

Provider
AS 300

C chooses shortest AS path

C

AS 400

D

E
Full routes from all providers

- More memory/CPU
- Fine grained routing control
- Usually transit ASes take full routes
- Usually pervasive BGP
Full routes from all providers

C chooses shortest AS path
Best Practices
IGP in Backbone

- IGP connects your backbone together, not your clients’ routes
 - Your clients’ routes go into iBGP
- IGP must converge quickly
 - The fewer prefixes in the IGP the better
- IGP should carry netmask information – OSPF, IS-IS, EIGRP
Best Practices...
Connecting to a customer

- Static routes
 - You control directly
 - No route flaps
- Shared routing protocol or leaking
 - You must filter your customers info
 - Route flaps
 - Strongly discouraged
- BGP for multi-homed customers
 - Private AS for those who multihome on to your backbone
 - Public AS for the rest
Best Practices...
Connecting to other ISPs

- Advertise only what you serve
- Take back as little as you can
- Take the shortest exit
- Aggregate your routes!!
- FILTER! FILTER! FILTER!
Best Practices...
The Internet Exchange

- Long distance connectivity is expensive
- Connect to several providers at a single point
Summary

- BGP Building Blocks
- BGP Protocol Basics
- BGP Path Attributes
- BGP Path Computation
- Typical BGP topologies
- Routing Policy
- Redundancy/Load sharing
- Best current practices