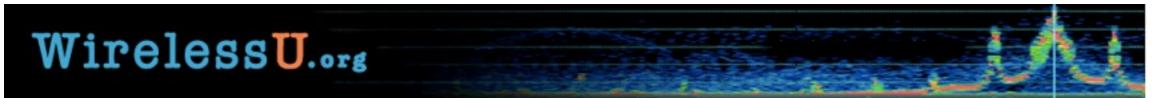


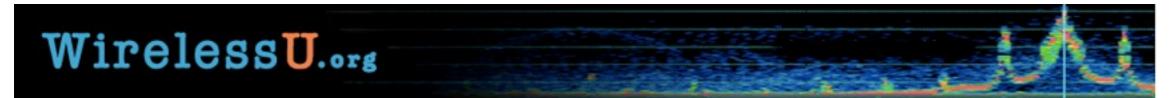
Bandwidth usage of common networking applications


Overview

- Bandwidth vs. bandwidth
- Networking stack review
- Basic rules for calculating bandwidth usage
- Examples
 - Calculating bandwidth usage for VOIP
 - Calculating bandwidth usage for an scp session
 - Calculating bandwidth usage for an HTTP download
- Errors and error correction

Bandwidth is finite

- Signal bandwidth is the difference or distance between the high and low cutoff frequencies in a channel.
- Like everything else, bandwidth is not infinite.
- Capacities of common networking media:
 - Ethernet via CAT5e/CAT6 cable 1 Gbit/sec
 - Ethernet via CAT5 cable 100Mbit/sec
 - •802.11G wireless 54Gbit/sec
 - T1 data line 1.54 Mbit/sec
 - GSM 64Kbit/sec(voice) 384Kbit/sec(data)
- These are all theoretical and not achievable in real-world situations.



What's eating our lunch?

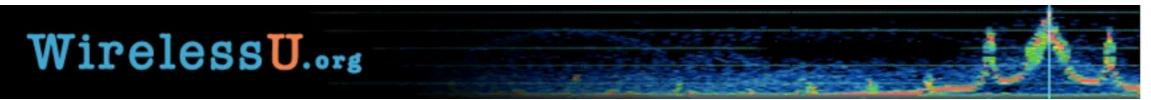
- Overhead is everywhere
- Structural overhead
 - "The cost of doing business"
 - Physical layer -ethernet frame header, PPP headers, ATM, VSAT protocols
 - Network and transport layer IP headers
 - Application Encapsulation and Application-specific headers
- Errors eat capacity too
 - Retransmission
 - Back-off/sync-ing messages, etc.
 - inefficient recovery
 - interference (wireless)

Basic bandwidth calculation:TCP/IP over Ethernet

Applications: VOIP Bandwidth Usage

Roughly, the bandwidth required for a VOIP call is

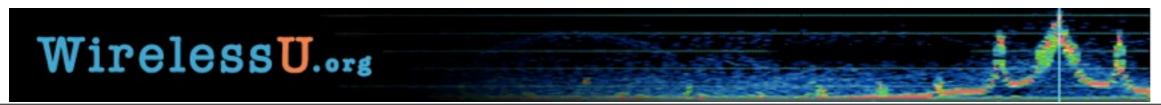
Codec bandwidth =(sample frequency/1000)*codec sample rate


((Codec bandwidth)+((network overhead)+(media overhead)) - VAD**

Total Network Bandwidth required*

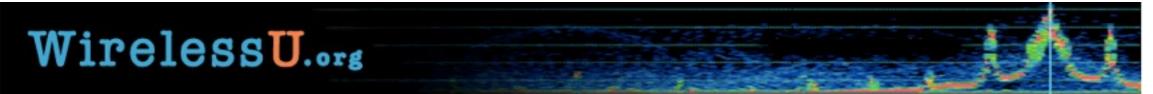
(usually given in Kbits/sec)

*Not including add'l Layer 2/3 headers like HDLC, MPLS, etc.

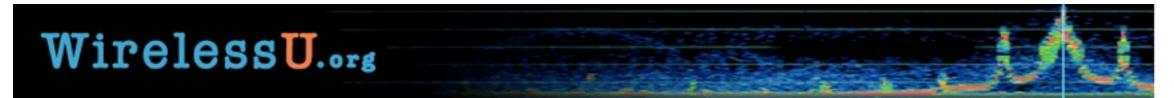

**Also called "silence suppression"

Some common VOIP codecs

	Data Rate(Kbit/ sec)	Codec Sample interval (in msec)	Codec sample size(byt es)	Voice sample rate(msec)	Voice payload(bytes)	payload packets/sec
G.711	64	10	80	20	160	50
G.726	32*	5	20	20	80	50
G.723.1	6.3	30	24	30	24	34
G.723.1	5.3	30	20	30	20	34
G.729A	8	10	10	20	20	50


^{*}can also be used at 16 & 24 Kbit/sec

G.711 over 802.3 Ethernet

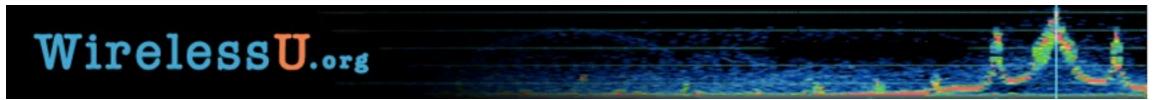

- Codec characteristics: G.711 64Kbit/sec codec
 - 20 msec(160 bytes or 1280 bits) sample payload
 - 50 Payload Packets/Sec(PPS) * 1280=64Kbit/sec
- Overhead components:
 - Ethernet frame header: 18 bytes (14 bytes +4 byte CRC)*8 =144 bits
 - RTP:12 bytes(96 bits)
 - IP header: 20 bytes(160 bits)
 - UDP header: 12 bytes(96 bits)

```
144+96+160+96=496 bits overhead *per packet*
50(payload packets/sec)*496=24,800 bits total overhead/sec
+64,000=
88,800Kbit/sec total bandwidth required
```


In addition

- Additional Layer2/3 protocols can add an additional 1-4 bytes-perpacket overhead
- Compression(cRTP, etc.) can remove 40+bytes/packet of overhead
- •Silence Suppresion (VAD) can reduce this even further

SSH Protocol Overhead


- Encrypted protocol with it's own internal transport, connection and authentication layers.
- Adds random(4-255 bytes) of padding to each packets
- Actual bandwidth consumption depends on channel type, transport, compression, etc.
- •For an ssh "tunnel" the worst-case additional overhead is:
 - 4 bytes ssh packet length
 - 1 byte random padding length(in bytes)
 - 1-255 bytes padding
 - ~20 bytes for MAC (depends on MAC algorithm)
 - 66 bytes IP encapsulation <----don't forget this!!

346 bytes

Summary

- When calculating network bandwidth needed for network applications, we must account for overhead used by the various network and transport layers carrying our data payload
- Some of this overhead is constant, some is variable.
- •Some of this can't be fully accounted for (errors, layer 2&3 routing protocols in intermediate routers, etc.), so we can really only make close estimates.
- •The only way to know for sure how much bandwidth an application will use is to to try it out. First get it working, then optimize

Exercises

- Calculate bandwidth needed for:
 - G.711 VOIP call over 802.11G
- Lab Practice
 - use iperf to measure:
 scp download of a Linux image or other file over Ethernet vs.
 - ftp download of the same file.
 - use tcpdump to look at and identify/compare protocols

Exercise: G.711 over 802.11G

- Codec characteristics: G.711 64Kbit/sec codec
 - 20 msec(160 bytes or 1280 bits) sample payload
 - 50 Payload Packets/Sec(PPS) * 1280=64Kbit/sec
- Characteristics for 802.11G
 - 54 Mbit/sec 2.4Ghz wireless protocol
 - Overhead:
 - 2 bytes frame-control 2 bytes Duration, 12-24 bytes of address space,
 - 2 bytes Sequence Control, 4-bytes CRC
 - Compute estimated bandwidth required
 - Hint: Things might go easier if you convert to bits

G.711 over 802.11G

- Codec characteristics: G.711 64Kbit/sec codec
 - 20 msec(160 bytes or 1280 bits) sample payload
 - 50 Payload Packets/Sec(PPS) * 1280=64Kbit/sec
- Overhead components:
 - 2-byte frame-control
 - +2-byte Duration
 - +12-24 bytes of address space
 - +2 bytes Sequence Control
 - +4-bytes CRC(trailing)

22-34 byte header or 176-272 bits of overhead per packet

+RTP+IP+UDP=528-624 bits per packet

26400-31200 +64000=90.4-95.2Kbit/sec

